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Abstract: The principle of identity has different formulations. Some, given by
philosophers, are pure nonsense. Even logicians make frequent mistakes. In first-order
logic, the so-called Leibniz scheme, does not define identity but the strongest
congruence relation. On the other hand, the weakest congruence relation, trivial
identity or diagonal identity, is not axiomatizable in first-order model theory, in the
same sense that the notion of well-order is not axiomatizable; and despite the
completeness of first-order logic with identity, when identity is taken as primitive.

“Identity is the strongest of the equivalent
relations that are transitive, reflexive and
symmetrical.” (Ruth Barcan-Marcus, 1993,
p- 202).

1. Introduction

The principle of identity has been considered in the
philosophical tradition as one of the fundamental principles of logic
and more generally as one of the fundamental principles of thought,
together with the principles of contradiction and excluded middle.
These two last principles have received formulations in the context of
modern logic which are relatively clear. It seems that it is not the case
of the principle of identity.

There are several non equivalent formulations of this principle.
One can get a good understanding of these different formulations
through the mathematical concept of congruence relation. The
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simplest form of the principle of identity, trivial identity, is not
axiomatizable in a model-theoretical sense in first-order logic.

2. Reflexivity and trivial identity
Many philosophers consider the following statement as the
principle of identity:

(RI) Every object is identical to itself or Everything is identical
to itself They also express it more formally by:

(FRI) Forevery a, a=a

However it is clear that such kind of formulations are false or in
the best case highly ambiguous. If one agrees that (FRI) is the correct
formalization of (RI), then (RI) just means that the identity is a binary
reflexive relation between things or objects. But there are a lot of
reflexive relations which cannot be considered as identity relations.
Reflexivity is a necessary condition for identity but not at all a sufficient
condition.

According to A. Stroll (1967, p. 122), “Almost all writers(...) from
Descartes to Kant, took the term ‘identity’ to mean that an object ‘is the
same with itself (Hume). These formulations were expressed by
the logical principle, regarded as one of the basic laws of reasoning,
[(x), x=x].7

It is strange that so much great philosophers have made such a
confusion. Maybe what they wanted to say is:

2 The formula “(x), x=x" here is obviously an anachronism. The universal
quantifier was not formalized by people like Descartes or Kant. The closer
they get at it is (FRI).
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(TI) Every object is identical to itself and different from all other
objects.

Everyone understands the intuitive idea of identity expressed by
(TI). Let us call it trivial identity. The idea of trivial identity can be
formulated in various different manners: “Anything whatsoever has
the relation of identity to itself, and to nothing else” (Williamson,
1998, p. 675) or “identity, the relation each thing bears just to itself”
(Wagner, 1995, p. 358). All these formulations hide the tautological
feature of the definition, which appears clearly if we reformulate (TI)
as follows:

(TII) Every object is identical to itself and different from dif-
ferent objects.

We can furthermore replace “different” by “not identical” and we get:

(TIII) Every object is identical to itself and not identical to non
identical objects.

In first-order logic, this corresponds to the formula:
Ox (x=x00y(xZy - x%y))
This formula is equivalent to the formula
Ox (x=x)

and so (TT) is in fact just (RI).

One can wonder if it is possible at all to correctly express what
we have called trivial identity. If for example there is a formalization
of trivial identity in first-order logic or second-order logic.

Wagner (1995, p. 358) writes: “Identity, the relation each thing
bears just to itself. Formally, a=b - OF (Fa — Fb).” Is this formula, or

H. Feitosa, F.T. Sautter (orgs.). Ldgica e Filosofia da Logica. Colegao CLE, v. 40, pp. 00-00, 2004.



4 Jean-Yves Béziau

better the formula OxUy (x=y -~ OF(Fx — Fy)), a correct formalization
of trivial identity in second-order logic? Is the scheme of formula
Ox0Oy(x=y - (¢x — ¢y)) a correct formalization of trivial identity in
first-order logic?

3. Congruence

Some philosophers make a more subtle confusion, they think
that identity is just an equivalence relation, i.e. a relation which is
reflexive, symmetrical and transitive. But once again this is a necessary
condition but in general not a sufficient condition. The relation must
be moreover compatible. This compatibility condition is in fact the
key to identity and corresponds to the concept of congruence.

This concept is a mathematical concept which has arisen from
some particular mathematical theories (geometry, algebra, etc.).
However a general definition of it can be given in the context of
mathematics considered as a theory of structures, following the spirit
of modern mathematics. Such a general definition was given by
Bourbaki.

The notion of congruence can be defined for any kind of
structures. Here we will focus on very simple structures of type <4, R>
where A is a set and R is a binary relation on A. One can get a general
definition of congruence just as a straightforward definition of this
particular example.

In the context of a given structure <A, R> we define a
congruence relation [Jas a binary relation which is an equivalence
relation and which moreover obeys the following condition of
compatibility:

(C) alb= R/a, c]iffR/b, c] - .

The notation “R/a, ¢/ is an abbreviation for aRcor cRaand the second
part of the conditional should be understood as: for any c, aRciff bRc,
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and cRaiff cRb. One can interpret informally this condition by “if two
objects are congruent they have the same position in the structure”.?

4. Diagonal, trivial congruence and trivial identity

Given a structure of type <A, R>, we can consider the diagonal
of the cartesian product AXA. This notion is familiar to any working
mathematician. For example if the set A has three elements 4, b, ¢, the
diagonal of AXA is the set with the elements (g a), (& b), (¢ ©).

Obviously the diagonal of AXA corresponds to the notion of
trivial identity. One may think that the working mathematician has
therefore a solution to the problem of defining trivial identity. But one
must be careful about naive mathematical terminology. It is not clear
at all how the working mathematician defines precisely the diagonal.

The diagonal of AXA is a congruence relation, it is the weakest
one. The relations of congruence of a structure of type <A, R> form a
lattice and the bottom of the lattice is the diagonal of AXA. In fact a
correct way to define the diagonal of AXA is to define it as the bottom
of the lattice of congruences. We will call such bottom, the trivial
congruence. Trivial congruence is a mathematical formulation of
trivial identity.

3 As it is known, there is a close connection between the notions of
morphism and congruence, since any homomorphism defines a congruence
relation and any congruence relation defines a homomorphism. If, after
Bourbaki and MacLane, one considers that the notion of morphism is the
central notion of mathematics, one can say that mathematics is in fact a
general theory of congruence relations.

The concept of congruence is not very well-known among philosophers.
That is why maybe they don’t have a clear idea of what is identity. The
concept of congruence (in a rather geometrical sense) was used by Suppes to
clarify the relation of identity between propositions (see e.g. Suppes, 1986).
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One can wonder if it is correct to reduce identity to trivial
congruence, i.e. to trivial identity. Are there no other candidates for
identity among congruences?

5. Leibniz congruence and the identity of indiscernibles

Another famous one is the top of the lattice, which can be called
the Leibniz congruence. This congruence obeys the converse of the
condition (C):

(LC) alb 0O R/ac]iffR/b, c].

This condition corresponds to Leibniz’s principle of identity of
indiscernibles and that is why we use the terminology “Leibniz
congruence’.*

There have been a lot of discussions about the truth of the
principle of identity of indiscernibles. In this mathematical framework

4 Of course we could have said that trivial congruence is the strongest
congruence relation, that it is the top of the lattice, and that Leibniz
congruence is the weakest congruence relation, the bottom of the lattice.
Barcan chooses this other option. In (Barcan, 1993) her terimonology is very
confuse, sometimes tautological and/or nonsensical. For example she writes
“Identity is the strongest of the equivalent relations that are transitive,
reflexive and symmetrical” (p. 202). This means nothing else than “Identity is
the strongest of the equivalent relations that are equivalent relations”. She
writes also that “Identity is the strongest equivalent relation that a thing bears
only to itself” (p. 200). But there is only one relation that a thing bears only to
itself. In (Barcus, 1961) she writes: “On the level of individuals, one or
perhaps two equivalence relations are customarily present: identity and
indiscernability. This does not preclude the introduction of others such as
congruence, but the strongest of these is identity” (p. 6). In this terminology it
seems that (trivial) identity and indiscernability are not congruence relations,
that they are just equivalence relations.
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we see that the question should be properly restated as follows: should
one consider Leibniz congruence as identity?

Of course Leibniz congruence can be considered as identity, but
there is no reasons to consider that this is the only identity. In parti-
cular it would be absurd to do so in a structure which is not simple.

A structure is called simple iff there is only one congruence
relation. In a simple structure therefore the trivial congruence and the
Leibniz congruence are the same, they are this only congruence
relation. If the structure is not simple the Leibniz congruence is
different from the trivial congruence.

In a structure which is not simple, to consider that the principle
of identity of indiscernible is true in the sense that Leibniz congruence
is the only identity, is to consider that the trivial congruence is not
identity, which is quite absurd. In fact in a structure which is not
simple, it seems to us that any congruence relation can be considered
as an identity, so there is not only one identity, but several identities:
trivial identity, Leibniz identity, and other intermediate identities.

One could say that to consider that Leibniz’s principle of
identity of indiscernibles hold in the physical world is to consider that
the physical world is a simple structure.

6. Axiomatization of identity
Let us consider the following first-order formula:

(R) Ox (x=x)
and the the following first-order scheme of formula (¢ is any formula):

K) Oxy (x=y - (0x - ¢3)) .
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A lot of peope say that the formulas (R) and (K) are axioms for
identity. What do they mean exactly? One must be careful since
“axiom” may have different meanings.

One of the meanings is the following. We say that a relation is
axiomatizable iff there is a set of formulas such that the models of
these formulas are exactly the structures in which this relation holds.
If this set of formulas is recursive, we say that the relation is
recursively axiomatizable, and if the set is finite, finitely
axiomatizable. If the formulas are first-order formulas, we say that the
relation is first-order axiomatizable, if they are second-order formulas,
second-order axiomatizable, etc.

For example the relation of well-order is not first-order
axiomatizable, but is second-order finitely axiomatizable.

(R) and (K) together form a recursive set of first-order formulas.
Let us call this set (RK). One can wonder if (RK) is an axiomatization,
in the above model-theoretical sense, of identity. To have an answer to
this question we must look at the models of (RK).

In a model of (RK), = corresponds to Leibniz congruence and in
fact (RK) is equivalent to the following scheme alone:

L) Oxy (x=y « (¢x - ¢3)).

The set (RK) is an axiomatization of Leibniz identity, and there-
fore not of trivial identity, since in a structure these two identities may
be distinct.

Trivial identity itself is not first-order axiomatizable, in the
model-theoretical sense. Few textbooks mention this fact, even fewer
present a proof of it. One of them is (Hodges, 1983).

Most of the logicians say that they take identity as primitive.
What does this mean? It means that in the semantical definition of
satisfaction they force the symbol “=” to be trivial identity by a
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definition which is quite tautological: one says that the atomic formula
“x =y” is satisfied by the sequence (g b) of elements of a structure iff
a=>bin the structure, where “=” is the tivial identity.

People rarely mention the fact that they take trivial identity as
primitive because it is not axiomatizable. After presenting a set of
axioms equivalent to (RK), Van Dalen (1980, p. 83) shyly suggests this:
“It is important to realize that from the axioms alone, we cannot
determine the precise nature of the interpreting relation. We

will always be interpreted by

« »

explicitly adopt the convention that
real equality.”

It would be interesting to meditate about the exact nature and
meaning of this convention. Generally nobody really thinks about it,
because in some sense it works: once “=” is taken as primitive, that its
semantical interpretation has been forced to be trivial identity, one
can axiomatize it in a proof-theoretical sense: if we consider a Hilbert-
type proof system for first-order logic and we add the set of formulas
(RK), then this proof-system is sound and complete relatively to the
model-theoretical semantics in which the interpretation of “=” is
trivial identity (this was in fact proven by Godel himself, cf. Gédel,
1930, theorem VII).

In a future paper we will discuss the question of axiomatization
of identity in second-order logic.
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