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Abstract

In this paper we study paraconsistent negation as a modal operator, considering the fact that the
classical negation of necessity has a paraconsistent behavior. We examine this operator on the one
hand in the modal logi65 and on the other hand in some new four-valued modal logics.
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1. Introduction

In this paper we show how the notion of paraconsistent negation can be thought from a
modal viewpoint*

In the next section we have a look at the squares of oppositions and modalities and we
point out that one of the corners of the square has no name in natural language. In fact this
nameless corner is a paraconsistent negation.

The square of modalities is a general view on modalities independent of a particular
logic. In the next two sections we study the nameless modality, which has the feature of a
paraconsistent negation, in the context of two definite modal logics. First in the context of

Y Work supported by a grant of the Swiss Science Foundation and the author is a member of the LOCIA
project (CNPg/Brazil).
E-mail address: jean-yves.beziau@unine.¢h-Y. Béziau).
1 More precisely, from amew modal viewpoint. Jskowski's approach (cf11]) is also connected with modal
logic. However our starting point here is quite different, although there are some connections at the semantical
level, see SectioB.3.
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the famous modal logic S5, second in the context of a new four-valued modal logic of our
own.

The modal interpretation of paraconsistent negation is very interesting from the point of
view of the intuitive understanding of paraconsistency and is a good basis for application
of paraconsistent logic to natural language, linguistics and computation.

The aim of this paper is to offer an hint on the modal approach to paraconsistency. We
present the basic idea, detailed work will be carried on elsewf3ei®]. We also hope
that it will act as a stimulus for other researchers and open a new area of investigation in
paraconsistent logic.

2. Thenameless corner of the squares of oppositions and modalities

The square of oppositions is a famous concept of traditional logic, coming directly from
Aristotle’s logic (although the square itself does not appear in Aristotle[1$3e There
are several variations of it, not necessarily equivalent.

According to modern first-order logic, the four corners of the square correspond to
3, =V and—3. The first two quantifiers are read “all” and “some” (or “there exists”), and
in English the word corresponding to the quantifiet is “none”. However in English
no primitive word corresponds tev. Recent researches show that there is no natural
language in which there is a primitive word for this quantifier [£0]). This has led some
people to reject the square of oppositions, arguing that the nameless corner of the square
is meaningless. We will show here that we don't need to reject more than two thousands
years of logical tradition and that we can find a meaningful interpretation of the nameless
corner.

We will find a solution looking at the modal version of the square of oppositions, the
so-called square of modalities, which can be found, for example, in a paper of Lukasiewicz
(cf. [13]). The four corners of the modal square areo, -0, —.

The square of modalities coincides in some sense with the square of opposition, at least
one precise connection can be made via Wajsberg’s thefir8nAnd furthermore, we
have here a situation similar to the case of the quantifiers, since we have words in natural
language for three of the modalities, “necessary”, “possible” and “impossible”, but there is
no word for the modality-0 which corresponds to the nameless quantifigr®

As it has been shown by Gddel, the modatiy in S4, the impossible, corresponds
to intuitionistic negation (cf[9]). If we think of this modality independently of a specific
modal logic, it is aparacomplete negation, i.e. a negation for which the law of excluded
middle does not hold.

Duals of paracomplete negations are paraconsistent negations. Due to the relation of
—0O and—¢ in the square, we can guess that these two modalities are dual arethst
in general a paraconsistent negation.

2 One may think erroneously that this nameless modality is “contingency”, contingency is in fact defined as
oa A —0a.
3 K. Doden has written several papers in this direction, i.e. the study of negation as impossibility, 4@, e.g.
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3. Thenameless corner from the point of view of S5
3.1. Basic properties of the modality —0 in S5

The operator- defined by—0 has the following properties i§5: we have formulas
andb such that,
a,~a¥b
a,~ak¥ —b
This shows that-00 obeys the basic negative requirements in order to be considered as
a paraconsistent negation. Let us see now its positive properties.
The following are theorems:
aV ~a
~(a N ~a)
(a —> ~a) — ~a
(~a—>a)—a
~(a ANb) < (~a Vv ~b)
~(~a A ~b) < (aV b)
~(a A ~b) < (~a Vv b)
~(~a A b) < (aV ~b)

And we have the following theorems but not their converses:

(a—>b)— (~aVvb)
~~a —da
~(~a Vv b) — (a A ~b)
~(aV b) — (~a N ~Db)
~(aV ~b) — (~a N Db)
~(~aV ~b) — (a \b)
Another important feature is that the bi-implication is a congruence relatiéi jnn

particular we have:

if Fa<bthenk~a < ~b

Finally, an interesting fact is that we can reconstiifgtaking as primitive connectives:
A, — and~, i.e. without classical negation or a standard modality.

4 For a discussion about positive and negative requirements for a paraconsistent negaf&in, see
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3.2. Thesemanticsof —O0 in S5

It is easy to define a semantics for this negation. If we consider the possible worlds
semantics folS5 with a universal relation of accessibility, we have in a given frdtne
—Oa is false in the world¥,
iff Da is true in the worldw,
iff a is true in every world ofC.

Therefore~a can be semantically defined &b by the following condition:

~a is false in the worldW iff « is true in every world ofC.

If one wants to study-01 in a given Kripke semantics other than the one§6r one can
take the following condition in a given framié with an accessibility relatio®:

~a is false in the worldW iff a is true in every world ofC accessible fronw.

In S4 this is the dual of the condition which defines the intuitionistic negatipwhich
is the following:

~ a is true in the worldW iff a is false in every world ofC accessible fron¥v.
3.3. Interpretation of =0 in S5

Combining the possible worlds ¢ with an idea connected toskowski's discussive
logic (cf. [11]) we have a quite intuitive interpretation of the paraconsistent negation

We can imagine that a frame is a discussion group and that the worlds are members or
agents of the discussion group. The paraconsistent negatiois ¢dlse for an agent of the
discussion group if and only if every agent of the group agreesatigtrue. This means
in particular that if every agent of the group agrees that true, then the paraconsistent
negation otz is false for the group, i.e. for every agent of the group.

The truth or falsity of this paraconsistent negation is holistic, it depends of the opinion
of the other agents. Contrary to the case &kdavski's logic, an agent can think thaand
its paraconsistent negatioru: are both false. (Compare wif8].)

Another interesting feature ofO is related to double negation. In natural language
double negation is often used to emphasize a sentence in such a way as if it was stronger
than simple affirmation, as in the following example:

It is not true that God does not exist.

In a logic like S5 in which we have

~~a — a

but not

a— ~~a
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double (paraconsistent) negation is really stronger than simple affirmation. The reason why
this is the case i85, is that double (paraconsistent) negation means necessity, as we have:

<o0a < Oa

and considering that:

OOa <> o0a
—0-—Oa < <¢0a

we have:

~~q <> da.

Therefore the above double negated sentence means from the point of view of the para-
consistent negation &f5:

God necessarily exists.

4. The nameless corner from the point of view of the four-valued modal logic M4

Several four-valued semantics have been presented to define a negation which is para-
consistent, the most famous being due to BelfidpOur starting point here is different,
because first we construct a four-valued semantics for a modal logic takengd < as
primitive, and then we define the semantics of a paraconsistent negation following the gen-
eral idea of the square by defining this negation-as

4.1. Thefour-valued modal logic M4

tukasiewicz has proposed a four-valued semantics for a logic of necessity and possi-
bility (cf. [13], see alsd8]), however this semantics generates a logic with quite strange
properties, strange at least from the viewpoint of a standard modal logi§3ike

Our idea here is to construct a modal logic with a four-valued semantics having more
standard properties than Lukasiewicz’s logic.

We consider a set of four-values, two non-designated valuesar@ 0, and two
designated values,land I". These values are ordered by the following linear order:
0" <0 <1 <1*.

Classical negation, possibility and necessity are definethble 1

Table 1

a —a Oa oa
o- 1t o 0"
ot 1= o0 1t
- ot o 1t
i+ o~ 1t a1t
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Table 2 Table 3
P -p pv-p O(pVv-p) a —a Oa —0Oa
o~ 1t 1t 1t o~ 1t o 1t
ot 1— 1- 0~ ot 1= o 1t
- ot 1~ 0~ - ot o 1t
L o e 1+ i+t o~ 1t o

Table 4

p —0Op O-—-0p —0O-0p

0~ 1t 1+ 0~

ot a1t 1+ 0~

1- 1t 1+ 0~

I O 0~ 1+

Conjunction and disjunction are defined in the usual way by the operaioendmax.
Implication is defined asa Vv b.

In the modal logicM 4, necessity distributes over conjunction, and possibility over dis-
junction, Kripke’s law is valid. We have also reduction of modalities and the replacement
theorem is valid. In facd/4 has almost all properties 66, minus the rule of necessity.

A typical example of the failure of the rule of necessity is the followipgs —p is a
tautology ofM4 buto(p v —p) is not. This is shown byfable 2

The fact that the rule of necessity is not valid f@i4 can be seen as a serious defect,
however tukasiewicz has argued at length against the validity of such a rul§l§ee
In M4 we also have a feature similar to tukasiewicz’s logic: necessity distributes over
disjunction and possibility over disjunction.

4.2. Propertiesof -0 in M4

The semantics of0 in M4 is explained and defined @yble 3
This negation has the same feature as the negation of Sette’sHdgiit is paracon-
sistent only at the atomic level since it collapses the four values in two values which have
classical behavior. This is shown Bgble 4
Therefore, if we use the abbreviatienfor -0, we have
p.~pFq
for a given atomic formulg, but

for any formulaa.
4.3. Interpretation of =0 in M4 and another proposal

The four-values can be interpreted as follows:
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0 means necessarily false,
ot means possibly false,

1~ means possibly true,

1+ means necessarily trde.

Following this interpretation, we can explain the behavior of the paraconsistent negation
~ defined by—-0O as follows:

Whena is false,~a is “necessarily true”, since we don’t want here a paracomplete
negation and since, due to the definition of necessitycannot be “possibly true”. And
whena is “necessarily true”, then-a is “necessarily false”. The controversial point is
whena is “possibly true”, then one could expect: to be “possibly false” or “possibly
true”, but in fact these two intermediate values are eliminated by the definition of necessity.
Now if we choose “necessarily false”, we will have a paracomplete negation, therefore
“necessarily true” is the only possibility.

This interpretation seems quite strange, the negation defin€aldg Swill have a more
intuitive interpretation.

This paraconsistent negation can be constructed from classical negation and necessity
defined inTable 6

The modal logic defined by this table is somewhat weaker $&aim particular we don’t
have reduction of modalities. However it is relatively intuitive and obeys the conditions
given by the square of modalities.

Finally the reader may point out that the paraconsistent negations defined with our set
of four values, could have been defined with only three values. This is not totally false,
but the full meaning of these paraconsistent negations is based on the whole framework
which includes also paracomplete negations and negations that are both paracomplete and
paraconsistent. From this point of view our four valued logic is much richer than Belnap’s.
S5 also is a very rich logic where it is possible to define not only a paraconsistent nega-
tion, but also a paracomplete one dual of it and a negation that is both paraconsistent and
paracomplete.

Our conclusion is therefore that paraconsistent negations constructed in a modal per-
spective, following the square of modalities, have a nice architecture. Long live Aristotle.

Table 5 Table 6
a ~d a —a Oa —Oa
0o~ 1t o~ 1+ o 1t
ot 1- ot 1= ot 1~
- 1- 1- ot ot 1-
1t o it o~ 1t o0

5 Compare with{15, p. 98] where “contingently” is used instead of “possibly”.
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