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1.1 Introduction

Many-valued1 and Kripke semantics are generalizations of classical seman-
tics in two different "opposite" ways. Many-valued semantics keep the idea
of homomorphisms between the structure of the language and an algebra of
truth-functions, but the domain of the algebra may have more than two values.
Kripke semantics keep only two values but a relation between bivaluations is
introduced.

Many-valued semantics were proposed by different people: Peirce, Łukasiewicz,
Post, Bernays. In fact all these people are also considered as founders of the
semantics of classical zero-order logic (propositional logic). And fromtheir
work it appears that the creation of many-valued semantics is almost simul-
taneous to the creation of the bivalent two-valued semantics. From this point
of view we cannot say that many-valued semantics are an abstract meaning-
less generalization developed “après coup”, as suggested by Quine ([Quine
(1973)] , p.84). However it is true that the meaning of the “many” values
is not clear. As Quine and other people have noticed, the division between
distinguished and non distinguished values in the domain of the algebra of

1Work supported by the Swiss Science Foundation
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truth-functions of many-valued semantics is clearly a bivalent feature. So, in
some sense many-valued semantics are bivalent, in fact they can be reduced,
as shown for example by Suszko, to bivalent (non truth-functional) semantics.
Suszko was also against the terminology “logical values” for these many val-
ues. He thought that Łukasiewicz was seriously mistaken to consider the third
value of his logic as possibility (see [Suszko (1977)] and also [da Costa,et
al (1996)], [Tsuji (1998)]). I don’t share Suszko’s criticism on this point. It
seems to me that the many values can be conceived as degrees of truth and de-
grees of falsity and that we can consider a four-valued semantics in whichthe
two distinguished values can be called “possibly true” and “necessary true”,
and the two non distinguished values can be called “possibly false” and ”nec-
essary false”. With this intuition we can develop a four-valued modal logic
[Dugundji (1940)]. The use of many-valued semantics for the development of
modal logic has been completely left out. This can be explained by two rea-
sons: on the one hand the negative results proved by Dugundji showing that
S5 and other standard modal logics cannot be characterized by finite matrices
[Dugundji (1940)], on the other hand the rise of popularity of Kripke seman-
tics.

Today many people identify Kripke semantics with modal logic. Typically a
book called “modal logic” nowadays is a book about Kripke semantics (cf.e.g.
the recent book by [Blackburnet al (2001)]). But modal logic can be devel-
oped using other kinds of semantics and Kripke semantics can be used to deal
with many different logics and it is totally absurd to call all of these logics
“modal logics” . Kripke semantics are also often called “possible worlds se-
mantics”, however this is quite misleading because the crucial feature of these
semantics is not the concept of possible world but the relation of accessibil-
ity. Possible worlds can easily be eliminated from the definition of Kripke
semantics and then the accessibility relation is defined directly between the bi-
valuations. For this reason it seems better to use the terminology “relational
semantics”. Of course, if we want, we can call these bivaluations "possible
worlds", this metaphor can be useful, but then why using this metaphor only in
the case of relational semantics? In fact in theTractatusWittgenstein used the
expression “truth-possibilities” for the classical bivaluations. Other concepts
of the semantics of classical zero-order logic were expressed by him using a
modal terminology: he said that a formula is necessary if it holds for all truth-
possibilities, impossible if it holds for none, and possible if it holds for some.
But Wittgenstein was against the introduction of modal concepts inside the
language as modal operators.

Many-valued and Kripke semantics may be philosophically controversial, any-
way they are very useful and powerful technical tools which can be fruitfully
used to give a mathematical account of basic philosophical notions, such as
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modalities. It seems to me that instead of focusing on the one hand on some
little philosophical problems and on the other hand on some developments
limited to one technique, one should promote a better interaction between phi-
losophy and logic developing a wide range of techniques, as for example the
combination of Kripke semantics (extended as to include Jaskowski seman-
tics) and Many-Valued semantics (extended as to include non truth-functional
many-valued semantics). My aim is this paper is to give a hint of how these
techniques can be developed by presenting various examples.

1.2 Many-Valuedness and Modalities

As many people have forgotten nowadays, the first formal semantics for modal
logic was based on many-valuedeness, this was proposed by Łukasiewicz in
1918 and published in [Łukasiewicz (1920)]. Moreover many-valued logic was
developed by Łukasiewicz in view of modalities, he introduced a third value
which was supposed to represent possibility. Although there is no operator
of possibility in the standard version of Łukasiewicz’s three-valued logic L3,
at first there was one, eliminated after Tarski showed that it was definable in
terms of other non modal connectives.

Łukasiewicz’s logic was dismissed as a modal logic by many people, since
it has strange features like the validity of the formulas:�a∧�b → �(a∧ b).
Later on, in 1940, the negative result of Dugundji showing that some of the
famous Lewis’s modal systems like S4 and S5 cannot be characterized by fi-
nite matrices was another drawback for the many-valued approach to modal
logic.

Nevertheless Łukasiewicz insisted in this direction and in 1953 he presented
a four-valued system of modal logic [Łukasiewicz (1953)]. This systemis
also full of strange features and was never taken seriously by modal logicians.
At the end of the 1950s the rise of Kripke semantics put a final colon to the
love story between many-valuedness and modalities. Nowadays the many-
valuedness approach to modal logic is considered as prehistory.

However I think it is still possible to develop in a coherent and intuitive way
many-valued systems of modal logic. A possible idea is to consider a set of
four-values, two non distinguished values, 0− and 0+, and two distinguished
values, 1− and 1+. These values are ordered by the following linear order:
0− ≺ 0+ ≺ 1− ≺ 1+. A possible interpretation is to say that 0− means neces-
sary false, 0+ possibly false, 1− means possibly true and 1+ means necessary
true.

The basic laws for modalities are the following:
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2a` a a` �a

a 6` 2a �a 6` a

2a` �a �a 6` 2a

In order for these laws to be valid the tables defining possibily and necessity
mustobey the conditions given by the following table:

a 2a �a
0− 0 0
0+ 0 1
1− 0 1
1+ 1 1

TABLE 1

In this table 0 means 0− or 0+ and 1 means 1− or 1+.

We have many possibilies choosing between minus or plus. Nevertheless
all systems obeying the conditions given by TABLE 1 obey the involution
laws:

2aa` 22a

�aa` ��a

the De Morgan laws for modalities:

2a∧2ba` 2(a∧b)

�a∨�ba` �(a∨b)

as well as Kripke law, considering that implication is defined classically as
¬a∨b and that disjuntion is standardly defined with the operatormin:

2(¬a∨b) ` ¬2a∨2b.

One possibility for the minus/plus choice is to reduce the four values to two
values 0− and 1+. We get then the following table:

a 2a �a
0− 0− 0−

0+ 0− 1+

1− 0− 1+

1+ 1+ 1+

TABLE 2 / M4-Red

With this idea we get the collapse of compound modalities:

�aa` 2�a
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�2aa` 2a

We are getting therefore very close to S5, although we know, due to Dugundji’s
theorem that this table cannot define S5. So what are the laws of S5 which are
not valid in M4-Red? It depends on the way that we define the non modal
connectives. We can reduce the four values to two values 0− and 1+ for these
connectives or not.

If we do not operate the reduction, we have the standard defintions for con-
junction and disjunction with the operatorsmin andmaxdefined on the linear
order, and we define the negation in the following logical way:

a ¬a
0− 1+

0+ 1−

1− 0+

1+ 0−

TABLE 3

In this case the rule of necessitation

if ` a then` 2a

is not valid, as shown by the following table:

p ¬p p∨¬p 2(p∨¬p)

0− 1+ 1+ 1+

0+ 1− 1− 0−

1− 0+ 1− 0−

1+ 0− 1+ 1+

TABLE 4

The fact that the rule of necessitation is not valid can be seen as a serious
defect. However, Łukasiewicz has argued at length against the validity of such
rule (see [Łukasiewicz (1954)]).

Another possibility is to operate a reduction of two values for all molecular
formulas. In this case, we get a logic in which the law of necessitation is valid
but in which self-extensionality

if aa` b then2aa` 2b

if aa` b then�aa` �b

does not hold.
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1.3 Possible worlds Semantics without Possible
Worlds

It seems that possible worlds are, as stressed by the name, essential in possible
worlds semantics.

In possible worlds semantics we have possible worlds and this would be the
difference with classical semantics or many-valued semantics. So an expres-
sion like “possible worlds semantics without possible worlds” sounds a bit
paradoxical like “orange juice without orange", etc. But in fact, as we will see,
possible worlds can easily be eliminated from the standard definition leading
to a definition which is equivalent in the sense that it defines the same log-
ics.

There are several presentations of possible worlds semantics, let us take a stan-
dard one, close to the one give by Johan van Benthem (cf. [van Benthem
(1983)]).

We consider a Kripke structureK =< W,R,V >, as a set W of objects called
possible worlds, a binary relation R between these worlds calledaccessibility
relation, and a functionV assigning a set of possible worlds to each atomic
formula. Then we give the following definition:

DEFINITION PWS

(0) |=w p iff w∈V(p)

(1) |=w ¬a iff 6|=w a

(2) |=w a∧b iff |=w a and|=w b

(3) |=w a∨b iff |=w a or |=w b

(4) |=w a→ b iff 6|=w a or |=w b

(5) |=w 2a iff for every w′ ∈W such thatwRw′, |=w′ a

(6) |=w �a iff for somew′ ∈W such thatwRw′, |=w′ a

What does mean this definition? What does this definition define? It defines a
binary relation between the worlds ofW of K and formulas, badly expressed
by the notation|=w a. This can be read as “the formulaa is true in the world
w”. From this definition, we then define what it means for a formulaa to be
true in the Kripke structureK: a is true inK iff it is true in every worldw of
K.
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As we see, in these definitions, the nature of the worlds is never used, theycan
be anything. Why then calling them worlds? What is used is the relation of
accessibility: different properties of this relation lead to different logics.

The second important point is that the definition defines a binary relation be-
tween the worlds ofW of K and formulas bysimultaneousrecursion: in clauses
(4) and (5), to define the relation between a worldw and a formula, we use the
relation defined between another worldw′ and formulas. In classical semantics
and many-valued semantics, we only usesimplerecursion.

Let us now transform this definition into a worldless definition Instead of con-
sidering a Kripke structure, we consider a Ipke structureI =< D,R>, as a set
D of functions calleddistributions of truth-valuesassigning to every atomic
formulaa the values 0 (false) or 1 (true), and a binary relationRbetween these
distributions calledaccessibility relation.

We now extend these distributions into bivaluations, i.e. function assigning to
every formula (atomic or molecular) the values 0 (false) or 1 (true).

DEFINITION PWS-W

(0) βδ(p) = 1 iff δ(p) = 1

(1) βδ¬(a) = 1 iff βδ(a) = 0

(2) βδ(a∧b) = 1 iff βδ(a) = 1 andβδ(b) = 1

(3) βδ(a∨b) = 1 iff βδ(a) = 1 or βδ(b) = 1

(4) βδ(a→ b) = 1 iff βδ(a) = 0 or βδ(b) = 1

(5) βδ(2a) = 1 iff for every β′
δ′ such thatδRδ′, β′

δ′(a) = 1

(6) βδ(�a) = 1 iff for someβ′
δ′ such thatδRδ′, β′

δ′(a) = 1

Using the above definition, we can then define, what it means to be true in the
Ipke structure I: a formulaa is true iff it is true for every bivaluation.

EQUIVALENCE OF THE TWO DEFINITIONS

It is the same to be true in a Kripke structure or to be true in an Ipke struc-
ture.

This claim means more precisely that given a Kripke structure, we can con-
struct an Ipke structure which leads to the same notion of truth and vice-versa.
The construction is very simple. Given a Kripke structure, we transform apos-
sible worldw into a distributionδw by puttingδw(p) = 1 iff w∈V(p). Given
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an Ipke structure, we transform a distributionδ into a possible worldwδ obey-
ing the condition:w ∈ V(p) iff δ(p) = 1. This condition in fact defines the
functionV.

In both cases the accessibility relation is transposed from worlds to distribu-
tions and vice-versa.

Someone may claim that possible worlds are nice tools, they help imagination,
they areheuristical. But we may call bivaluations in DEFINITION PWS-
W, possible worlds. We still get the heuristics, but keep a low ontological
cost. In fact some people even call possible worlds, the bivaluations of the
standard semantics of classical propositional logic, following the first ideaof
Wittgenstein.

In some recents advances in possible worlds semantics (Dutch trend), possible
worlds may be useful, but they are totally useless for the standard semantics
of S5, etc. On the other hand to work without possible worlds can simplify
further constructions as the ones presented in the next sections.

1.4 Combining Many-Valued and Kripke
semantics

If we consider possible worlds semantics without possible worlds, i.e., given by
DEFINITION PWS-W, it is easy to combine them with many-valued seman-
tics: instead of considering bivaluations, we consider functions into a finiteset
of values divided into two sets, the sets of distinguished values and the set of
non-distinguished values. We will call such combined semanticsMany-valued
Kripke semantics.

Sometimes people talk about impossible worlds or incomplete worlds (see e.g.
the volume 38 (1997) ofNotre Dame Journal of Formal Logic). An impos-
sible world is a world in which a formula and its negation can both be true,
an incomplete world is a world in which a formula and its negation can both
be false. These impossible worlds (or incomplete worlds) semantics can be
described more efficiently by Many-valued Kripke semantics.

Let us give an example of many-valued relational semantics, we consider a
many-valued Ipke structureMI =< D,R>, whereD is a set of distributions
assigning to every atomic formulaa, the values 0,12 or 1 and whereR is a
binary relation of accessibility between these distributions. We now extend
these distributions into threevaluations, i.e. function assigning to every formula
(atomic or molecular) the values 0,1

2 or 1.
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DEFINITION MI

(0) θδ(p) = δ(p)

(1) θδ¬(a) = 1 iff θδ(a) = 0

(2) θδ(a∧b) = min(θδ(a),θδ(b))

(3) θδ(a∨b) = max(θδ(a),θδ(b))

(4) θδ(a→ b) is distinguished iffθδ(a) is non distinguished orθδ(b) is distin-
guished.

(5) θδ(2a) = 1 is distinguished iff for everyθ′
δ′ ∈W such thatδRδ′, θ′

δ′(a) is
distinguished.

(6) θδ(�a) = 1 is distinguished iff for someθ′
δ′ ∈ W such thatδRδ′, θ′

δ′(a) is
distinguished.

At first this definition seems quite the same as DEFINITION PWS-W of the
preceding section, but since we have a third value, things change. Fromclause
(1), we deduce that

(2’) θδ¬(a) = 1
2 iff θδ(a) = 1

2.

If we consider that 1 is distinguished and the values 0 and1
2 are non-distinguished,

then the principle of contradiction expressed by the formula¬(p∧¬p) is not
true inMI , provided we standardly define “true inMI ” by “distinguished for
every threevaluations”: we have some threevaluations in which both values
of p and¬p are 1

2, and therefore in which the value of¬(p∧¬p) is 1
2, i.e.

non-distinguished. This is nothing very knew and this is what happens in
Łukasiewicz three-valued logicL3, where we have:

6` ¬(a∧¬a)

We are justcombiningdifferent semantics. What happen here is that, at the
level of modalities, we don’t either have the principle of non contradiction:

6` ¬(2a∧¬2a) 6` ¬(�a∧¬�a)

If we take 1
2 and 1 as distinguished and only 0 as non-distinguished and pro-

vided we define the consequence relation in the usual way, then the formulas
above are valid but the formulas below expressing theex-falso sequitur quod
libet which are valid with only 1 as distinguished are not valid anymore:

6` (p∧¬p) → q p,¬p 6` q

6` (2p∧¬2p) → q 2p,¬2p 6` q

6` (�p∧¬� p) → q �p,¬� p 6` q



10 Many-Valued and Kripke Semantics

These two possible Many-valued Kripke semantics show that the principle of
contradiction is independent of theex-falso sequitur quod libetin its two forms,
consequential or implicational.

1.5 JKL Semantics

Following some ideas of Jaskowski, we can change the definition of truth in a
Kripke structureK, by saying that a formulaa is true inK iff it is true at some
world, i.e. there issomevaluation in which it is true. In case we are working
with Many-valued Kripke semantics, this means: there issomevaluation for
which the value of this formula is distinguished.

We will call many-valued with this definition of truth, “JKL-semantics”. Such
semantics were introduced in [Béziau (2001)].

If we consider the JKL semantics corresponding to the semantics MI of the
preceding section, with only 1 as distinguished, we have:

a,¬a 6` b 2a,¬2a 6` b �a,¬�a 6` b

but

` (a∧¬a) → b ` (2a∧¬2a) → b ` (�a∧¬�a) → b

and

6` ¬(a∧¬a) 6` ¬(2a∧¬2a) 6` ¬(�a∧¬�a).

Something that would be interesting is a logic in which the principle of con-
tradiction and theex-falso sequitur quod libetin its two forms are not valid
only for modalities. This fits well for example for a logic of beliefs, where
someone may have contradictory beliefs without “exploding”, but where con-
tradictions explode at the factual level. For this, we need a more sophisticated
construction.

1.6 Non Truth-Functional Kripke semantics

Many-valued semantics are generally truth-functional, that means that theyare
matrices (see [Béziau (1997)] for a detailed account on this question). But
it is also possible to introduce non truth-functional many-valued semantics.
I have introduced these kind of semantics in [Béziau (1990)] and developed
furthermore the subject in [Béziau (2002)].

To understand what it means, let us first explain the difference betweentruth-
functional semantics and non truth-functional semantics at the level of bivalent
semantics. The set of bivaluations of the semantics of propositional classical
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logic is the set of homomorphisms from the algebra of formulas and the ma-
trix of truth-functions defined on {0, 1}. Since the algebra of formulas is an
absolutely free algebra, this set can be generated by the set of distributions, i.e.
functions assigning 0 or 1 to atomic formulas. Anon truth-functional bivalent
semanticsis a semantics where the bivaluations cannot be reduced to homo-
morphisms between the algebra of formula and an algebra of truth-functions
defined on {0, 1}.

The semantics of classical logic can be presented in two different ways which
are equivalent: the usual way with the distributions and the matrix2, or by
defining directly a set of bivaluations (functions from the whole set of formulas
into {0, 1} obeying the following conditions:

(1) β¬(a) = 1 iff β(a) = 0

(2) β(a∧b) = 1 iff β(a) = 1 andβ(b) = 1

(3) β(a→ b) = 0 iff β(a) = 1 andβ(b) = 0

We have a fairly simple example of non truth-functional bivalent semantics, if
we replace the condition( 1) by the conditions (1’):

(1’) if β¬(a) = 1 thenβ(a) = 0

In this logic, we may haveβ¬(a) = β(a) = 0. The logic generated by this
condition has been studied in [Béziau (1999a)]. Another example of non truth-
functional bivalent semantics can be found in [Béziau (1990b)]. A general
study of logics from the viewpoint of bivalent semantics (truth-functionalor
non truth-functional) has been developed in [da Costa,et al (1994)]

The definition of non truth-functional many-valued semantics is a straight-
wordward generalization: Anon truth-functional many-valued semanticsis a
semantics where the valuations cannot be reduced to homomorphisms between
the algebra of formula and an algebra of truth-functions defined on a given set
of values.

A very simple is the following: we replace Łukasiewicz’s condition for nega-
tion by the following:

(1’) if β¬(a) = 1
2 thenβ(a) = 1

2

2In general this is presented in a rather informal way, where the matrix does not really appear but is
described indirectly by means of truth-tables, see [Béziau (2000)].



12 Many-Valued and Kripke Semantics

Now we will construct a non truth-functional many-valued semantics. As in the
case of the bivalent semantics for classical propositional logic, truth-functional
bivalent (or many-valued) semantics can be presented in two different way. For
example, instead of DEFINITION PWS-W, we can consider an Ipke structure
I =< B,R> as a setB of bivaluations assigning to every formula (atomic or
molecular) 0 or 1 and a relationRof accessibility between bivaluations.

Then we stipulate that these bivaluations should obey the following condi-
tions:

DEFINITION PWS-W GLOBALIZED

(1) β¬(a) = 1 iff β(a) = 0

(2) β(a∧b) = 1 iff β(a) = 1 andβ(b) = 1

(3) β(a∨b) = 1 iff β(a) = 1 or β(b) = 1

(4) β(a→ b) = 1 iff β(a) = 0 or β(b) = 1

(5) β(2a) = 1 iff for every β′ ∈ B such thatβRβ′, β′(a) = 1

(6) β(2a) = 1 iff for every β′ ∈ B such thatβRβ′, β′(a) = 1

Now we replace condition (1) by the following set of conditions:

(1.1.) if β(a) = 0 thenβ¬(a) = 1

(1.2.1.) ifβ¬¬(a) = 1 thenβ¬(a) = 0

(1.2.2.) ifβ¬(a∧b) = 1 thenβ(a∧b) = 0

(1.2.2.) ifβ¬(a∨b) = 1 thenβ(a∨b) = 0

(1.2.2.) ifβ¬(a→ b) = 1 thenβ(a→ b) = 0

This semantics is non truth-functional. In the logic defined by this semantics,
we have:

6` ¬(2a∧¬2a) 6` ¬(�a∧¬�a)

2a,¬2a 6` b 2a,¬2a 6` b

6` (2a∧¬2a) → b 6` (�a∧¬�a) → b.

but

` ¬(a∧¬a)

a,¬a` b
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` (a∧¬a) → b

provided there are no modalities ina.

1.7 Conclusion: Many Possibilities

We have presented different way to generalize and to combine many-valued
and Kripke semantics, and in fact there are still some other possibilities like
the semantics developed by Buchsbaum and Pequenos (see e.g.[Buchsbaumet
al (2004)])or like the semantics of possible translations developed by Carnielli
and Marcos (see e.g. [Carnielli,et al (2002)]).

All these tools may be very useful both from an abstract viewpoint of a general
theory of logics (see e.g. [Béziau (1994)]) and from applications to philosoph-
ical problems.

For example they can be used, as we have shown, to construct models showing
the independency of some propreties of negation relatively to some other ones.
This is very useful in the field of paraconsistent logic.
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