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Abstract. A proof is presented showing that there is no paraconsistent logic
with implication which has a three-valued characteristic matrix and in which
the replacement principle holds.
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1. Introduction

A paraconsistent logic is a logic with a paraconsistent negation. A paraconsistent
negation is defined on the basis of the rejection of the law of explosion. This means
that there are propositions ϕ and ψ such that:

ϕ,¬ϕ 6` ψ
This definition by itself is not satisfactory. Some other properties have to hold

unless we allow any unary connective to be considered as a negation. Unfortunately,
it is not universally agreed yet which cluster of properties and metaproperties
should be considered to guarantee that we are dealing with a negation.1 The
general idea is to have a good part of the properties of classical negation which are
compatible with the rejection of explosion on the one hand, and perhaps natural
stronger forms of that principle on the other hand. This includes first of all negative
properties of negation. Very natural examples of such properties are p 6` ¬p when
p is an atomic formula, and p,¬p 6` ¬q when p and q are distinct atomic formulas.2

However, positive properties should be considered as well. Examples here may be
double-negation rules, and rules for interaction of negation with other connectives,
such as ¬(ϕ ∧ ψ) ` ¬ϕ ∨ ¬ψ.

1See [6, 8, 9, 13, 1, 2, 3] for some studies of this problem.
2The later property has been called called strong paraconsistency in [4]. It is a special case of
strict paraconsistency ([17]), as well as bold paraconsistency ([10]).
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An important positive property at the level of metaproperties is the replace-
ment property (not to be confused with the substitution property). A logic has this
property if it allows to replace an occurrence of a formula by a logically equivalent
one, where two formulas ϕ and ψ are called equivalent in a logic (notation: ϕ a` ψ)
if each of them can be deduced in that logic from the other. For example, suppose
a logic has the replacement property, p is logically equivalent in it to p ∧ p, and
p ∧ q ` p. Then p ∧ q ` p ∧ p as well (the second occurrence of p having been
replaced by p∧ p). Following a terminology introduced by Polish logicians, a logic
which has the replacement property is called self-extensional.

The replacement property is an important metaproperty valid in classical
logic, intuitionistic logic, all intermediate logics, all normal modal logics, and
many more. An interesting question concerning paraconsistent logics is to what
extent this metaproperty is compatible with the notion of paraconsistent nega-
tion. Concerning this, it is known that many paraconsistent logics do not have
this property. Thus in the paraconsistent logic C1 of Newton da Costa [11] we
have p ⊃ p a` q ⊃ q but we do not have ¬(p ⊃ p) a` ¬(q ⊃ q). What is more,
Urbas has shown that there are no paraconsistent extensions of C1 in which the
replacement theorem holds (cf. [16]).

Another negative result concerning self-extensional paraconsistent logics was
given in [7], where it is shown that paraconsistent logics in which both ϕ a` ¬¬ϕ
and ` ¬(ϕ ∧ ¬ϕ) hold cannot be self-extensional. A consequence of this result
is that basic three-valued logics like Asenjo’s logic [5] (renamed LP by Priest
[14]) and da Costa and D’Ottaviano’s logic J3 ([12]) are not self-extensional. The
same is known to be true for another famous three-valued paraconsistent logic:
Sette’s logic P1 [15], even though in this logic we do not have ` ¬(ϕ∧¬ϕ). These
examples raise the question whether every three-valued paraconsistent logic (with
a reasonable expressive power) necessarily lacks the replacement property.

In the present paper we provide a partial answer to the above question. It
is shown that there are no implicative paraconsistent self-extensional three-valued
logics. By “implicative” we mean a logic which possesses an implication (that is, a
connective ⊃ such that T , ϕ ` ψ iff T ` ϕ ⊃ ψ). This negative result is important,
because three-valued matrices provide the most basic tool for the development of
non-classical logics in general, and paraconsistent logics in particular.

2. Basic Definitions

In what follows we denote by L a propositional language with a set Atoms(L) =
{P1, P2, . . .} of atomic formulas, and use p, q, r to vary over this set. The set of
the well-formed formulas of L is denoted by W(L) and ϕ,ψ, φ, σ will vary over its
elements. The set Atoms(ϕ) denotes the atomic formulas occurring in ϕ.

For the reader’s convenience, we now review some relevant definitions.

Definition 2.1. A logic is a pair L = 〈L,`L〉, such that L is a language, and ` is
a structural and non-trivial Tarskian consequence relation for L.
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Definition 2.2. Let L = 〈L,`L〉 be a logic.

• Formulas ψ,ϕ ∈ W(L) are equivalent in L, denoted by ψ a`L ϕ, if ψ `L ϕ
and ϕ `L ψ.
• Formulas ψ,ϕ ∈ W(L) are congruent (or indistinguishable) in L, denoted by
ψ ≡L ϕ, if for every formula σ and atom p it holds that σ[ψ/p] a`L σ[ϕ/p].
• L has the replacement property , or is self-extensional ([18]), if any two for-

mulas which are equivalent in L are congruent in it.

Definition 2.3. Let L = 〈L,`L〉 be a propositional logic. A binary connective ⊃ of
L is called an implication for L if ⊃ has in `L the following property (which both
classical and intuitionistic implications have, and which characterizes the latter):

T , ϕ `L ψ iff T `L ϕ ⊃ ψ.

Definition 2.4. A matrix for a language L is a triple M = 〈V,D,O〉, where

• V is a non-empty set of truth values;
• D is a non-empty proper subset of V, called the designated elements of V;
• O is a function that associates an n-ary function �̃M : Vn → V to each n-ary

connective � of L.

Definition 2.5. Let M = 〈V,D,O〉 be a matrix for L.

• An M-valuation for L is a function ν :W(L)→ V such that for every n-
ary connective � of L and every ψ1, . . . , ψn ∈ W(L), ν(�(ψ1, . . . , ψn)) =
�̃M(ν(ψ1), . . . , ν(ψn)). We denote the set of all the M-valuations by ΛM.
• A valuation ν ∈ΛM is an M-model of a formula ψ, if it belongs to the set
modM(ψ) = {ν ∈ ΛM | ν(ψ) ∈ D}. The M-models of a theory T are the
elements of the set modM(T ) = ∩ψ∈T modM(ψ).

In the sequel, we shall sometimes omit the prefix ‘M’ from the notions above.
Also, when it is clear from the context, we shall omit the subscript ‘M’ in �̃M.

Definition 2.6. Given a matrix M, the consequence relation `M that is induced
by (or associated with) M, is defined by: T `M ψ if modM(T ) ⊆ modM(ψ).
We denote by LM the pair 〈L,`M〉, where M is a matrix for L and `M is the
consequence relation induced by M.

3. Paraconsistent Three-valued Matrices

Since this paper aims to show that three-valued paraconsistent logics with certain
properties do not exist, we should be very clear about what we mean by the term
“paraconsistent logics”. A useful general definition can be found in [3]. However,
for the purposes of this paper the following much weaker notion would do.

Definition 3.1. Let L = 〈L,`L〉 be a propositional logic whose language L includes
the unary connective ¬.

1. ¬ is called a weak negation for L if the following conditions are satisfied:
• p 6`L ¬p if p is atomic.
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• ¬p 6`L p if p is atomic.
• There is no formula ϕ such that both `L ϕ and `L ¬ϕ.3

2. A logic L = 〈L,`L〉 is ¬-paraconsistent if ¬ is a weak negation for L, and
there are atoms p, q such that p,¬p 6`L q.4

From now on we assume that L includes ¬, and write just “paraconsistent”
instead of “¬-paraconsistent”. We also write a`M instead of a`LM , ≡M instead
of ≡LM , etc.

Definition 3.2. A matrix M for L is paraconsistent if LM is paraconsistent.

Proposition 3.3. Every 3-valued paraconsistent matrix is isomorphic to a matrix
M = 〈V,D,O〉 in which V = {t, f,>}, D = {t,>}, ¬̃t = f , ¬̃f ∈ D and ¬̃> ∈ D.

Proof. Let M = 〈V,D,O〉 be a 3-valued paraconsistent matrix. Since p 6`M ¬p,
there are two distinct elements t and f in V such that t ∈ D, f 6∈ D, and ¬̃t = f .
Since p,¬p 6`L q, necessarily there is also an element > in V such that both > ∈ D
and ¬̃> ∈ D (and so > is distinct from both t and f). Finally, since ¬p 6`M p, and
f is the only non-designated element of V, necessarily ¬̃f ∈ D. �

4. The Main Theorem

In this section we assume, without loss of generality, that every 3-valued paracon-
sistent matrix has the form described in Proposition 3.3.

Proposition 4.1. Let M = 〈{t, f,>}, {t,>}, O〉 be a 3-valued paraconsistent ma-
trix. Then ϕ ≡M ψ in M iff ν(ϕ) = ν(ψ) for every assignment ν in M.

Proof. The condition is obviously sufficient. To show that it is also necessary,
assume that ν(ϕ) 6= ν(ψ) for some assignment ν in M. If ν(ϕ) = f and ν(ψ) 6= f
then ψ 6`LM ϕ. If ν(ϕ) = t and ν(ψ) 6= t then ¬ψ 6`M ¬ϕ. Similarly, if ν(ψ) = f
and ν(ϕ) 6= f then ϕ 6`M ψ, while if ν(ψ) = t and ν(ϕ) 6= t then ¬ϕ 6`M ¬ψ.
Hence in all cases ϕ 6≡M ψ. �

Theorem 4.2. LetM be a 3-valued paraconsistent matrix, and suppose LM has an
implication ⊃. Then LM is not self-extensional.

Proof. First observe that the fact that ⊃ is an implication for M implies that
T `M ϕ whenever T `I⊃ ϕ, where I⊃ is the implicational fragment of intuitionistic
logic. In what follows we freely use this fact.

Now assume that LM does have the replacement property. To reach a con-
tradiction, we need some facts that follow from our assumptions about M.

1. t⊃̃f = >⊃̃f = f .
Proof: Since p, p ⊃ q `I⊃ q, also p, p ⊃ q `M q. It follows that if ν(p) ∈ D
and ν(q) = f then necessarily ν(p ⊃ q) = f . Hence t⊃̃f = >⊃̃f = f .

3This condition was not included in the definition of “weak negation” used in [1]. The first two

conditions have been considered in [13].
4Since `L is structural, this implies that p,¬p 6`L q whenever p and q are distinct atoms.
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2. a⊃̃a = t for every a ∈ {t,>, f}.
Proof: Since ⊃ is an implication for LM, `M ϕ ⊃ ϕ for every ϕ. Hence
a⊃̃a ∈ D for every a ∈ {t,>, f}. The fact that `M ϕ ⊃ ϕ for every ϕ implies
also that p ⊃ p a`M q ⊃ q for every atomic formulas p and q. Therefore it
follows from Proposition 4.1 that ν(p ⊃ p) = ν(q ⊃ q) for every assignment
ν in M, and every p and q. Hence either a⊃̃a = t for every a ∈ {t,>, f},
or a⊃̃a = > for every a ∈ {t,>, f}. Had the latter been the case, we would
have got that ν(¬(p ⊃ p)) ∈ D for every assignment ν in M, implying that
¬(p ⊃ p) is a theorem of LM. Since p ⊃ p is a theorem of LM, This would
have contradicted the assumption that ¬ is a weak negation for LM. (See the
third condition in the definition of weak negation.) It follows that a⊃̃a = t
for every a ∈ {t,>, f}.

3. f⊃̃a = t for every a ∈ {t,>, f}.
Proof: The previous item and Proposition 3.3 imply that ¬̃(a⊃̃a) = f for
every a ∈ {t,>, f}. It follows that ¬(p ⊃ p) has no model in M, and so
¬(p ⊃ p) `M p. Since ⊃ is an implication for LM, this in turn implies that
`M ¬(p ⊃ p) ⊃ p, and so p ⊃ p a`M ¬(p ⊃ p) ⊃ p. Since a⊃̃a = t for every
a, and ¬̃t = f , the last fact implies that t = f⊃̃a for every a ∈ {t,>, f}.

4. ¬̃f = t.
Proof: Since ¬p, p `M ¬p, and ⊃ is an implication for LM, ¬p `M p ⊃ ¬p.
On the other hand p ⊃ ¬p `M ¬p, since if ν(¬p) = f then ν(p) = t,
and so ν(p ⊃ ¬p) = f by item 1 above. It follows that ¬p a`M p ⊃ ¬p.
Hence Proposition 4.1 implies that ν(¬p) = ν(p ⊃ ¬p) for every ν and p. In
particular, if ν(p) = f we get that ¬̃f = f⊃̃¬̃f = t (by item 3).

Now a simple computation using items 2 and 1 (together with Proposi-
tion 3.3) shows that if p is atomic then p `M ¬(p ⊃ ¬(p ⊃ p)). On the other hand it
follows from item 3 (or from item 2) that if ν(p) = f then ν(¬(p ⊃ ¬(p ⊃ p)) = f ,
implying that ¬(p ⊃ ¬(p ⊃ p)) `M p. Hence p a`M ¬(p ⊃ ¬(p ⊃ p)). However, by
letting ν(p) = > we get (using items 2, 1, and 4) that ¬p 6`M ¬¬(p ⊃ ¬(p ⊃ p)).
This contradicts the assumed replacement property of LM. �
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