
Preface of an Anthology of Universal Logic
From Paul Hertz to Dov Gabbay1

This book is a retrospective on universal logic in the 20th century. It gathers papers and
book extracts in the spirit of universal logic from 1922 to 1996. Each of the 15 items is
presented by a specialist explaining its origin, import and impact, supported by a bibliog-
raphy of correlated works. Some of the pieces presented here, such as “Remarques sur les
notions fondamentales de la méthodologie des mathématiques” by Alfred Tarski, are for
the first time translated into English.

Universal logic is a general study of logical structures. The idea is to go beyond par-
ticular logical systems to clarify fundamental concepts of logic and to construct general
proofs. This methodology is useful to understand the power and limit of a particular given
system. Lindström’s theorem is typically a result in this direction: it provides a character-
ization of first-order logic. Roughly speaking, Lindström’s theorem states that first-order
logic is the strongest logic having both the compactness property and the Löwenheim–
Skolem property (see details in Part 10). Such a theorem is concerned not only with first-
order logic but with other nearby possible logics. One has to understand what these other
possible logics are and be able to compare them with first-order logic. In short: one has
to consider a class of logics and relations between them. Lindström’s theorem is a result
in favor of first-order logic, but to claim the superiority of this logic one must have the
general perspective of an eagle’s eye. Moreover Lindström’s theorem favors first-order
logic within a limited galaxy of possible logics. At a more universal level, things change.
One may want to generalize Lindström’s theorem to other galaxies, such as the galaxy of
modal logics (about such generalization see e.g. [5]). In order to do so, we need a clear
understanding of what Lindström’s theorem exactly depends on.

Comparison of logics is a central feature of universal logic. The question of translation
of a logic into another one is directly connected to it. This topic is especially treated in
Part 4. Gödel has shown that it is possible to translate intuitionistic logic into a system
of modal logic and more surprisingly classical logic into intuitionistic logic, a surprising
result since in some sense intuitionistic logic is strictly weaker than classical logic (among
other things, the excluded middle holds in the latter but not in the former). There are other
cases of such a paradoxical situation, e.g. the occasion of a logic weaker than another
logic which can however be translated into its weaker sister (see [7] and [24]). This is
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a phenomenon similar to Galileo’s paradox showing that we may have a one-to-one cor-
respondence between a set and one of its proper subsets. Galileo’s paradox is cleared up
by showing that there are two concepts corresponding to two contiguous but distinct no-
tions. Clarification of concepts is also a device to solve a translation’s paradox. We must
have a good definition of what the strength of a logic is, understanding that there is not
only one way to compare logics, in particular that there are different non-equivalent ways
to translate one logic into another. It is important to point out that we cannot solve this
problem just by straightforwardly importing concepts from other part of mathematics,
thinking they will do the job in the logic realm. Intuitionistic logic is not a sublogic of
classical logic in the same sense that rational arithmetic is a subalgebra of real arithmetic.
One has to avoid the famous sufism of Nasruddin: a man at night looking for his key, not
where he lost it, but under the light of a not so nearby lamp-post.

Another paradox appears when combining classical logic with intuitionistic logic. They
may collapse into the same logic, contrary to the expectation of the theory of combination
of logics: to get the smaller conservative extension of both logics preserving their own
idiosyncrasies (see [35] and [14]). An opposite paradox in combination of logics is the
copulation paradox: instead of having less, we have more: e.g. by putting together the
logic of conjunction with the logic of disjunction, we may get distributivity (see [8] and
[9]). To avoid these paradoxes we must develop a good theory of combination of logics
and to do so we must find the right concepts. With these paradoxes the logician is con-
fronted with some particular cases that must be taken into account and analyzed to build
a nice abstract theory. So in some sense logic is an empirical science, in the sense that
the logician is facing some objective phenomena that cannot be dropped, whatever their
private reality is. As it is common in the history of mathematics, first particular cases are
studied and then the level of abstraction rises. This is typically what has been happening
in the theory of combination of logics. First logicians were combining modal logics, and
then they started to develop a general theory of combination of logics, in particular Dov
Gabbay with his pivotal concept of fibring (see Part 15).

But the abstraction rise is not necessarily progressive, there are also some radical jumps
into abstraction. In logic we can find such jumps in the work of Paul Hertz on Satzsys-
teme (Part 1) and of Alfred Tarski on the notion of a consequence operator (Part 3).
What is primary in these theories are not the notions of logical operators or logical con-
stants (connectives and quantifiers) but a more fundamental notion: a relation of conse-
quence defined on undetermined abstract objects that can be propositions of any science
but also data, facts, events. Probably Hertz and Tarski did not directly think of all possi-
ble interpretations of such abstract objects. When performing jumps into abstraction, we
cannot foresee the true depth and breadth of the realm which is being opened. In uni-
versal logic, consequence is the central concept. But this consequence relation is neither
syntactical (proof-theoretical), nor semantical (model-theoretical). We are beyond the di-
chotomy syntax/semantics (proof theory/model theory). This level of abstraction is the
highest vertex of an upward pointing triangle with syntax and semantics as base angles. It
is the crucial point of the completeness theorem; by reaching it we are led to its trivializa-
tion, following Wójcicki’s way of speaking. In the original work by Hertz and Tarski this
is not so clear, and one may be confused by the fact that Hertz’s name is rather connected
with proof theory due to its influence on Gentzen’s work, and that Tarski’s name is rather
connected with semantics due to his work on truth and model-theory. But Hertz’s original
work is not so proof-theoretical, as shown by its later development in a structuralist per-
spective by Arnold Koslow [25]. It is also worth recalling that in his first paper Gentzen
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stays at Hertz’s abstract level, proving an abstract completeness theorem (this is discussed
in Part 14). Concerning Tarski, it is important to clearly distinguish his work on conse-
quence operators from his work on model theory although there is a connection between
the two explained in Dana Scott’s paper presented in Part 12.

When we consider a logic as a structure with the consequence relation as the central
concept, a relation which can be defined in many different ways but that can also be con-
sidered independently of any particular specification, we can say that we are at the level
of abstract logic. The terminology “abstract logic” was much used by Roman Suszko. In
the 1950s Suszko developed his work with Jerzy Łós defining the consequence operator
over an absolutely free algebra, leading to the notion of a structural consequence operator,
in the spirit of Lindenbaum representation theorem of logical matrix theory (Part 7). At
the end of the 1960s Suszko, along with Donald Brown and Stephen Bloom, came back
to a more abstract setting that he explicitly called “abstract logic”, considering a conse-
quence relation over an undetermined abstract algebra (Part 11), a level of generalization
not as high as the one of Tarski’s first framework of consequence operator, but higher
than the one of abstract model theory where the expression “abstract logic” is sometimes
also used. Suszko and other people in Eastern Europe had the idea that logic was part of
universal algebra, a mathematical trend highly popular in the East. There was an assimi-
lation of abstract logic with universal algebra, connected with a broader assimilation, that
of universal algebra with mathematics as a general theory of structures. In this context
the differences between Boolean algebras, lattices and any mathematical structures is just
a question of level of abstraction. There may be confusion in this mixture, such as when
many years ago the word “structure” was used as synonymous with “lattice” by Glivenko
(see [20] and [17]).

Universal logic can be defined as a general study of logical structures in the same way
that universal algebra is a general study of algebraic structures. The word “universal” in
“universal logic” is used according to this analogy: as in universal algebra, universal logic
is not a universal system, but rather a universal systematization. Universal algebra is not
one algebraic system encompassing everything, but a bunch of global concepts allowing
us to unify the treatment of the multiplicity of algebraic structures. These concepts were
mainly put forward by Garrett Birkhoff in the 1930s (see [10] and [11]). The central con-
cept is the concept of abstract algebra defined by Birkhoff just as a set with a family of
operators. The spirit of universality is the same in universal logic and universal algebra,
but these two fields are different because a logic structure is not necessarily an abstract
algebra. Reduction of logic to algebra can be developed through algebraization of logic,
which can mean both the reduction of logical structures to algebraic structures and the ap-
plication of algebraic methods to logic. Generally the former is seen as a first step towards
the latter. But although it is interesting to make a connection between logic and algebra,
there is no good reason to think that logic reduces to algebra. There are indeed logical
structures that cannot be algebraized (see [6]). One may also apply other mathematical
methods and tools to develop logic, for example topology. The initial Tarskian concept
of consequence operator is in fact closer to topology than algebra. But the very idea of
universal logic is that logical structures are different from other mathematical structures
and that more generally logic is different from other parts of mathematics.

To have a deeper understanding of this, we have to think at the level of a general theory
of mathematical structures. One may think of category theory. But category theory will
not, right at the start, clarify what a logical structure is. And to apply category theory to
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logic in the perspective of an alternative foundation of mathematics, as it was done by
Lawvere [26], is not the same as developing a study of categories of logical structures [2].
In this latter case we consider logical structures encompassing classical and non-classical
logics, working with a pre-categorial vision of the concept of logical structures based
on the reality of the huge variety of logical systems. A famous categorization of logical
structures is due to the late Joseph Goguen, originator of the concept of institution (see
Part 13). What is fascinating is that the origin of this trend of general abstract nonsense
is computer science, a very concrete and applied science. Goguen described the situation
as follows: “The enormous and still growing diversity of logics used in computer science
presents a formidable challenge. One approach to bringing some order to this chaos is to
formalize the notion of a logic and then systematically study general properties of logics
using this formalization, including the representation, implementation, and translation of
logics. This is the purpose of the theory of institutions, as developed and applied in a
literature that now has hundreds of papers.” [21]

To understand what a logical structure is, it is worth having a look at Bourbaki’s mon-
umental work. Bourbaki was the first to develop a general theory of mathematical struc-
tures. To avoid misunderstandings, one must distinguish Bourbaki’s informal theory ex-
pressed in his 1948 paper L’Architecture des mathématiques [12] and the formalization of
it presented in a chapter of the 1954 book Théorie des ensembles entitled Structures [13].
The defect of this dated set-theoretical formalization cannot be used as a fatal argument
against the informal theory. More than anything it is important to remember that Bour-
baki was the first to develop a general theory of mathematical structures and to consider
morphism as a central concept of mathematics (see [4] and [16]). From the bourbachic
viewpoint it is clear that mathematical structures do not reduce to algebraic structures.
According to Bourbaki there are three distinct classes of mother structures from which
we can reconstruct mathematics, mixing them thus generating cross structures. These
fundamental classes of structures are structures of order, algebraic structures and topo-
logical structures. Bourbaki was not excluding the existence of other mother structures,
as recalled by Jean Porte, who tried to develop logic in the bourbachic spirit—his PhD
advisor was René de Possel, one of the founding members of Bourbaki. Porte, in his
very interesting book Recherches sur la théorie générale des systèmes formels et des sys-
tèmes connectifs published in 1965, studies different classes of logical structures taking
into account and including the recent developments of the Polish school on consequence
operators and logical matrix theory (see Part 9).

Porte clearly states that he is not doing metamathematics, explaining that the logical
systems he is studying are not exclusively describing mathematical reasoning. For him
logic is mathematical, but not necessarily about mathematics. The expression “mathe-
matical logic” is highly ambiguous because it can mean the logic of mathematics or a
mathematical study of logic (this ambiguity was already noted by Zermelo in 1908, see
[30, p. 320]). First-order logic can be seen as a combination of the two. But these two
orientations may be quite different and they indeed were different in the history of mod-
ern logic. They can be distinguished in a broad outline using the opposition between the
Boolean way and the Fregean way. Boole was using mathematics to understand the laws
of thought, and these are not only concerned with mathematical thinking. Boole had a gen-
eral perspective on reasoning, as Aristotle had: syllogistic is about any kind of reasoning.
But syllogistic is neither mathematical in a Boolean sense—it does not use mathematics
to describe reasoning—nor in a Fregean sense—it does not give an accurate description of
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mathematical reasoning. Frege’s main interest was to describe reasoning of arithmetics,
for doing that he was not using mathematics, but some two-dimensional graphism with
a cryptic name: Begriffsschrift. Such ideography is not more mathematical than musical
notation. A similar tendency—the use of a non-mathematical technique to describe math-
ematical reasoning—can be found with Peano’s pasigraphy and with Whitehead’s and
Russell’s Principia Mathematica. Jean van Heijenoort puts these tendencies in the same
basket: according to him the three of them have the feature of a lingua characteristica
(see [23]). We can consider first-order logic as a mix: rules of syntax (construction of the
language) and rules of proofs (proof theory) are generally closer to a lingua characteris-
tica orientation, but mathematics is extensively used for the semantics developed in model
theory. This mix was described by Chang and Keisler in their classical book [15], by the
equation model theory = logic + universal algebra. In this equation “logic” may be in-
terpreted as logic syntax and “universal algebra” as a class of mathematical structures
(Chang and Keisler are here under the influence of the reduction we were mentioning:
structures ⊆ algebras).

A mix also appears at another level qualified as mathematics of metamathematics by
the Polish duo Rasiowa/Sikorski [33]. This can be considered as synonymous to algebraic
logic. Such use of mathematics is different from the use of mathematics at the semantic
level. This can be understood through the example of classical propositional logic: its se-
mantics is the Boolean algebra on {0,1} but classical logic can directly be considered as a
Boolean algebra by factoring it. These are two different methodologies, the first is mainly
due to Post [32] and the second, more than 10 years later, to Tarski (not to Lindenbaum as
often erroneously stated). This is the second methodology which is now usually qualified
as algebraization of logic. Paul Halmos has generalized this methodology to first-order
logic popularizing the expression “algebraic logic” (see [22]), but this terminology was
introduced first by Curry and with a different meaning more connected with universal
logic.

Haskell Curry was the last PhD student of Hilbert and tried to systematically develop
the formalist approach, both at the philosophical and metamathematical levels. But finally,
as pointed out by Seldin [34], his approach would be better qualified as structuralist. In
the present anthology Seldin translates and comments extensive extracts of Curry’s mono-
graph Leçons de logique algébrique (Part 6). This book is not very well known and has
never been translated into English. It was published in 1952, eleven years earlier as a more
famous book by Curry, Foundations of mathematical logic [19]. As indicated by the title
of this later book, Curry is interested in the foundations of logic, not in the foundations
of mathematics. This difference may not be immediately caught because: 1) someone
may not pay attention to the way the three notions foundations/mathematics/logic are
combined, understanding Curry’s title as synonymous with logical foundations of mathe-
matics; 2) if we consider that mathematical logic is mainly concerned with mathematical
reasoning, foundations of mathematical logic has to do with foundations of mathematics.
But Curry, like Porte and the Poles, is not interested only in mathematical reasoning, he
has also interest in many systems of logic describing reasoning concerning other fields,
like quantum logic. His 1952 monograph is a study of many different systems of logic and
to do so he develops a general framework, using some mathematical tools, in particular
mathematical structures that are more or less algebraic structures.

In the 1950s Curry was the first to pay attention to the work of Saul Kripke. Kripke as a
teenager wrote to him and they maintained a correspondence during a couple of years (see
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[19, p. 240, 243, 250, 306]). Curry had much interest in modal logic, however, due to his
formalist background he had been working more on its proof theory. But Curry was open
minded, interested in all aspects of logic, having an impressive knowledge of what was
going on in logical research, as we can see through the excellent bibliography of [19].
It is worth emphasizing that Kripke also had broad interests, he was working in many
different logical systems other than modal logic, as we can see through Curry’s book,
such as multiple conclusion sequent systems for intuitionistic logic (p. 306). Kripke was
considering logic in a general perspective but probably he was not aware that by devel-
oping a semantic framework for modal logics, he would provide a universal tool whose
applications go far beyond the field of modal logic. Modal logic is a field of research that
is directly connected to universal logic: there are many different systems of modal logic
and it has been natural to develop a general theory of the class of modal logics. This the-
ory gives good indication of how universal logic can be developed, giving hints for the
study of other classes of logics and for systematization of logical structures in general. For
example it is obviously useful to find the general formulation of the completeness theo-
rem beyond all variations of Kripke structures, or the general techniques for combining
them. Kripke structures can also be used to deal with many systems of logics other than
modal systems: intuitionistic logic, relevant logic, paraconsistent logic. Moreover they are
a powerful tool for making links between propositional logics and higher-order logic, in
particular reducing fragments of first-order logic into propositional modal systems, work
especially developed by Johan van Benthem (see e.g. [1]) who presents Kripke’s work in
Part 8. We may introduce the expression Kripke logics to name the class of logics that can
be defined using Kripke structures. This class does not reduce to modal logic. And vice
versa the class of modal logics is not included in the class of Kripke logics.

It is important to recall that the first semantics for modal logic is due to Łukasiewicz,
it is a three-valued matrix semantics [28]. Later on Łukasiewicz developed a four-valued
matrix semantics [29]. Matrix semantics does not reduce to modal logic. The tendency
in fact, due to the awkwardness of Łukasiewicz’s systems and Dugundji’s negative result
about characterization of S5 by finite matrices, is to consider that we have here two dis-
joint classes of logics: on the one hand the class of logics definable using logical matrices
that can be called truth-functional logics (rather than many-valued logics, see [31]), on the
other hand the class of modal logics. This does not mean that the class of truth-functional
logics and Kripke logics are disjoint. For example classical propositional logic is a truth-
functional logic and also a Kripke logic, even if the Kripke semantics for it is rather trivial
(one may also argue that the truth-functional semantics of classical propositional logic is
trivial compared to much more complex truth-functional semantics). Łukasiewicz used
matrix semantics in a philosophical perspective, but Tarski saw it rather as a universal
tool and it was developed as such in the Polish school, in particular by Lindenbaum. The
work of Lindenbaum on logical matrices has been published mainly through Łos’s mono-
graph [27]. But logical matrices is not a pure Polish product, it was developed also by
Emil Post presenting bivalent matrices for classical propositional logic [32] and immedi-
ately generalizing the technique (Post was born in Poland, but grew up in the USA) and
by Paul Bernays. In Part 2 Bernays’s work is presented: using many-valued matrices, not
to develop a particular non-classical logical system as Łukasiewicz did, but to analyze the
independence of axioms for classical propositional logic.

As pointed out by Suszko [36], it is possible to provide a bivalent semantics for
Łukasiewicz’s logic L3. This apparent paradox is cleared up when we know that this
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bivalent semantics is not truth-functional. A general theory of non truth-functional bi-
valent semantics has been developed by Newton da Costa and his school, the theory of
bivaluations (see Part 14). We can call da Costa logics logics that can be defined by non
truth-functional bivalent semantics. Da Costa’s idea was that non truth-functional bivalent
semantics is a universal tool in the sense that any logic can be defined using it; in other
words, the class of da Costa logics is the universal class of logics. This is a contestable
claim because we can argue that some structures that can rightly be called logics are not
definable with this tool. In fact it is doubtful that there exists any tool that can be used
to define all logics. There is no such logic wand. But anyway the theory of bivaluations
is very interesting for at least two reasons. Firstly it breaks the illusion of the complete-
ness theorem as a magical result connecting two worlds, on the one hand a world made
of strings of symbols, on the other hand a world of flesh and blood models. In the theory
of bivaluations, a model is just a set of formulas. Secondly the theory of bivaluations is
used to study many non-classical logics. In fact da Costa was led to this theory trying to
provide semantics for his systems of paraconsistent logic [18]. As it is known, da Costa
is the main promoter of paraconsistent logic, and contrary to other people like Asenjo [3]
or Jaśkowski developing paraconsistent logic in a rather Sufist way, using respectively the
lamp-post light of matrix semantics and modal logic, da Costa invented a new tool hav-
ing broad applications, being a new light for the universal dimension of logic. Using da
Costa’s theory of bivaluations it is possible to develop paranormal logics, logics which
are both paraconsistent and paracomplete. It definitively shows that the foundations of
logics lay far beyond some principles such as the principle of non-contradiction or the
excluded middle. At the abstract level everything is possible, concepts are elaborated that
can be used to develop tools that can be applied to many concrete situations.
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