RULES. DERIVED RULES. PERMISSIBLE RULES
AND

THE VARIOUS TYPES OF SYSTEMS OF DEDUCTION

Jean—-Yves Béziau

Abstract. We first define the notions of rule, derived rule,
permissible rule for any system whatsocever ; then we state the
exact distinction between two kinds of systems strongly connected:
first level and second level systems. This abstract setting is
illustrated by the example of the implicative intuitionistic
propositional logic. Then we have a look at some historical

developments.

Introduction

As logic is expanding most confusions arise from a lack of a
general framework. Fundamental concepts which at first had a
precise meaning have progressively been completely distorted and
are used in various ways which are not coherent simultaneously.
This problem is especially vivid for concepts like those of rule
and system of deduction which are basic tools for philosophical
logic as well as for mathematical logic. We provide here a general
abstract setting and we give clear analyses of some well-known
problems such as the status of the cut rule in a cut-free system,
the classification of systems, the way to present the modus

ponens.
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ABSTRACT SETTING

1. Rules and derived rules

Let ¥ be a set, a rule R over ¥ is a pair ;x> where X is a
subset of ¥ and x is an element. of ®. The element=s of X are called
premises of R and x conclusion of R. A rule whose set of premises
is empty is called an axiomatic rule. The following symbolisation
will be used for representation of rules:

x1 ... xa

=
up the premises, below the conclusion ; note that we are using the
notion of order in this symbolization only for naming.

A proof of x from the set of assumptions X over a set of
rules R is a =seguence <xi;.xa;....;3%x> =such that each of its
member is the conclusion of a rule of R whose premises precede it
or is an assumption.

A derived rule of R is a rule <X;x> such that there exists a
proof of x from the set of assumptions X.

Given a set. ;R of rules, it is clear that every rule of R is a
derived rule of R, such kind of derived rules will be called
primitive rules.

Now let us write X}— x to say that there is a proof of x from
the set of assumptions X. A svstem of deduction &€ is a triple
@=<X;R;}|—>. For the sake of simplicity we will speak of the system
R over X, or of the system R, or of R.

We call the relation |- the logic of (the system> R, and the
sublogic of the logic of M which contains only the pairs <X;30

such that X=0, the semi-logic of R ; the semi-system R is the



system R considered with its semi-logic instead of its logic.
It is clear that <Xpo is a derived rule of R iff X|— x: the
logic of R is the set of derived rules of R and the semi-logic of

R is the set of axiomatic derived rules of R.

2. Logics and permissible rules

A logic £ over X is a pair <¥;|> where |- is a set of rules
over ®. X}|— x is written for <Xxdoe|—.

Given a logic over %, a permissible rule <{xi,.,xa,..};x>
iz a rule such that:

if O} x1 and .. and @|— xa and .. then O x

Example: given a logic over ¥ and x an element of ¥ <{x}-;x)
is a permissible rule.

The set of permissible rules of a logic over ¥ is itself a
logic over %, we will call it its double. The logic over X which
contains every pair <X;x> which is in the double of 2 but not in 2
will be called the shadow of 2. If the shadow of a logic is
non-empty we will say that it is a shadowy logic, if not it is a

shadeless logic ; or: a logic has a shadow, has no shadow.

o/

" its shadow /,

its double=its permissible
rules

rd

A semi-logic over a non-empty set ¥ is always a shadowy logic

because if x is in ® <{{x};»> is a permissible rule but {x}tbr— x



Given a logic, an expression about }— will be called a Ilow.
Example of law:
folding law: for every x,xl,..,xa,..

if O}— x1 and .. and @}— xa and .. then O x
iff
{xfl,...,xot,...H— X.

We will call the unfeolding low, the first half of this law
(=if> and the enfolding law, the second half (=only if> And we
will speak about folding logic, etc.

Using this terminology we have: a logic is an unfolding logic
iff it is a sublogic of its double, an enfelding logic iff it has
no shadow and a folding logic iff it is the same as its double.

Another example of law is:
cut low: for every x, v, X, Y,

if X}|— x for every xeY and Yf—y then X|—vy.
*1  Every cut logic is an unfolding logic.

A logic is said to be determined by a system iff it is the
logic of this system.

One more law:
identity law: for every x and X such that xeX, Xf— x:

A logic for which the identity and the cut laws hold will be
called a normal logic.
®2 P 4 logic over X is normal iff it can be determined by a

svstem over X.

3. Systems and permissibility
The logic of a system is a cut logic 2> thus it is an

unfolding logic (x1>, every derivable rule is permissible.



Given a system R we can speak about the permissible rules of
R, that means the permissible rules of its logic, but we must keep
in mind that this set of permissible rules is independent of R in
the following sense: if we have a logic which has a shadow, this
shadow will always be there: in any system which determines this
shadowy logic there are permissible non-derivable rules.

3 » If two enfolding systems have the same semi-logic
(=axiomatic derived rules) they have the same logic (=derived
rules).

*4 » A rule is permissible for a system iff in adding it to the
syvstem the new system so-obtained has the same semi-logic.

A svstem R is said to be derivable from a system R’ iff every
primitive rule of R is a derived rule of R R and R° are
interderivable iff R is derivable from R’ and vice versa.

*5 P Two systems are interderivable iff they have the same logic
(=derived rules).

But two systems can have the same semi-logic and be

non-interderivable: if a primitive rule of the first two system is

a permissible non-derivable rule of the second.

4. Rising : second level systems and metalogic

Given a set ¥1, the set of all rules of ¥1 is called X2.

A first level logic <(using symbolism: a 1-logicd i= a logic
over X1.

A second level logic (= a 2-logic) is a logic over X2.

Similarly we define the concepts of first and second level
rule and system. A second level rule will be represented like

this:



X1 > x1 ... Xa > xa

X > x
where X > x is a symbolization of <X;x>.

Given a logic, laws about 2 (ie, expressions about |- and
true laws for £ form a kind of general metalogic, the problem to
know whether it. can be considered as a logic or not will not be
treated here. We will limit ourselves to a restricted part of
metalogic.

Among all the laws about |- we will consider only those which
have the following form:
if Xi|— x1 and .. and Xa|— xa and .. then X|— x

If such a law holdsl for a logic 2 it will be called a
2-metarule of 2.

Note that. the cut, identity, enfolding laws are not exactly
of this form but they can be considered as sets of laws of thi=s
form. The unfolding law cannot be considered in this way.

Given a 1-logic, this kind of metalogic can be treated in

terms of 2-logic.

The 2-metalogic 23]12.:(32;}?) of a 1-logic £=<&1;|T> is the
following 2-logic:
{<X1;x15,... ,<Xoxe0 ... H—; x>
iff

if X1 ITxi and .. and Xa }Txcx and .. then X}Tx.

We see that the 2-metalogic of a 1-logic is its set of
2-metarules.

A second level metalogic (=2-metalogic) is a second level



logic which is the 2-metalogic of a first level logic.

The heart of a 2-metalogic is a sublogic of it defined as
follows: {(X’i;xi),...,()(a;xa),-..}k <X x> iff X1=0, 3 Xo=0,
X=0 and {(Xipd),...,(){a;xa),...}l? <M.

Thus it is clear that there is a one-to-one correspondence

between the double of a logic and the heart of its 2-metalogic.

its 2-metalogic
=jts Z2-metarules

one-to-one
correspondence /"

its double= 4
its permissible rules -~

the heart of its
2-metalogic

x5 P A 2-metalogic is a normal enfolding (second level) logic.

We must not confuse this fact with the fact that the
identity, cut and enfolding laws which appear as sets of 2-rules
are or are not in a 2-metalogic. For example these 2-rules will be
in the 2-metalogic of a logic iff it is a normal enfolding logic
but the 2-metalogic of any logic will always be a normal enfolding
logic.

wWhen speaking about e.g. the cut rule we mean a set of rules,

we do not make an explicit distinction here between rules and sets



of rules.
*7 P Two logics are the same iff they have the same 2-metalogic.

The semi-logic of a 2-system can be considered as a 1-logic
in the following way: B[? ;x> iff XIT x. We will say that a
1-logic is determined by a 2-system to say that it corresponds in
this way to its semi-logic.

Note that a 1-logic determined by a 2-system is not necessary
normal:
*8 P A4 object is a 1-logic iff it can be determined by a«a
2-system.

Then the concept of Z-system is far more general that the one
of 1-system. In fact this shows that to climb to a third level is

unnecessanry.

At this point it is possible to present the following

picture:
if we are interested in: we can restrict ourselves to:
i-enfolding logic 1-semi-system
1i-normal logic 1-system
i-logic 2-semi-system

But the wvalidity of this kind of restrictions is highly

relative as we will see.

5. The interest of rising
The 2-metalogic of a i-logic determined by a 2-system is not
necessary the logic of this 2-system. In fact this 2-metalogic is

the set of permissible rules of the 2-system and as the logic of



this 2-system is its set of derived rules we have:
*0 P The 2-metalogic of the semi-logic of a 2-system is the

logic of it iff it is an enfolding system.

a2-system R derived rules of R permissibles rules of R
=the logic of R =the 2-metalogic of:
the semi-logic of R the semi-logic of R

considered as a 1-logic

Now we can see this very important fact: in the same way that
two non-interderivable systems can determine the same semi-logic a
i-logic can be determined by two 2-systems which are not
interderivable.

Using *7 we have:
*10 » If two 'Zﬁ.s-ystem.s' determine the same semi-logic they have
the same permissible rules.

But. they have not necessary the same derivable rules.
*11 » If a logic can be determined by a 1i-system, the identity
and cut rules are permissible rules of any 2-system which
determines it.

But. they are not necessary derived rules.

It is possible to study 2-systems only by interest for
1-logic and thus to consider 2-systems only as 2-semi-systems but
it i=s clear from previous considerations that even in this case
2-logic is important because the set of derived rules of a
2-system is its logic, ie a 2-logic and the set of permissible
rules of a 2-system is the 2-metalogic of its semi-logic and thus

a 2-logic.

10



It. is clear that what we call a 2-system is a simplified form
of a system of type LJ of Gentzen (see [11D.

We have left aside notions of cardinality and order which are
not. fundamental for our present purpose and we have left copen the
question of the nature of basic objects.

Now it will also have been possible to consider 2-systems of
type LK: in these systems constituents of rules are of type X;Y>
instead of type <X;x>. But note that considering this kind of
systems does not necessary mean that we are interested in
multiple-conclusion logic (see [361): we can study
2-multiple-systems only by interest for one-conclusion logic and
in the framework of one-conclusion logic ; our present abstract
setting can be extended to this kind of system without rising to
multiple-conclusion logic.

In fact it appears that Gentzen was using
2-ordered-multiple-systems only for the study of 1-semi-logic. The
Gentzenian symbol » must not be interpreted as |—

It is possible to say that generally the scope of logic is
limited to enfolding normal logic and that we can restrict
ourselves to 1-semi-systems and 1-semi-logic. But even in this
treatment we are led to use more complex concepts and to climb to

the =econd level

All this kind of phenomena are very well known in
mathemat.ics.

One may consider for example the structure of the natural
number immerged in a more complex structure only by interest for

natural numbers.

11



But it seems that we are always drawn to more complex levels

and that we are carried unwillingly to higher and higher spheres.

6. Transformations of 1-systems into 2-systems

The problem is the following: given a 1i-system, how to find a
2-system whose semi-logic is the logic of this 1i-system, ie how to
find a 2-semi-system which determines the logic of this i-system 7

In fact there are many ways of passing from the first to the
second level so that a 1-system appears as a condensation of
various 2-systems.

Straight transformation

It is clear that a 1-rule can be considered as a 2-rule:

Xpoo=<(0XX;x>>. Using symbolizm:

x1 ... xa
the 1i-rule:
x
(%]
is transformed into the 2-rule:
{xi,...,xa,--.} > X

Given a set R of 1-rules, if we consider the 2-system OR
so-obtained all rules are axiomatic, then we have: X|? x iff <o
is in R. If we want more we have to put additional rules.

We consider the identity rule <id>, the cut® rule {(cut®> and
the cut rule {(cutDd:

(2 O > x {x} >y X > x {x Y > y
id cut.o c

X > x g >y XuY > y
(xeX)D

#12 p The semi-logic of a 1-system R 1is determined by the

ut

2-system OR plus the Ocut rule.

213 » The logic of a i-system R is determined by the 2-system OR

12



plus the identity and cut rules.
Unfolding transformation
Given a 1-system R we will transform it in a 2-system

unfR by unfolding each rule of it:

x1 ... xo
a 1-rule of R:

O > x1 ... O > xa

is transformed into the 2-rule:
0O > x

#14 » The semi-logic of a 1-system R is determined by the
2-system unfR.

If we are interested only in semi-logic this transformation
is sufficient.

Now to obtain the full solution we use extented unfolding:

x1 ... xa
a 1-rule of R:

X1 > x1 ... Xa > xa

is transformed into the 2-rule:
X » x

%15 » The logic of a 1-system R 1is determined by the
2-svystem exunfR plus the identity rule.

It is possible that cut will be a derived rule of exunfiR® and
it is possible that it will not be. In any case cut is a
permissible rule of exunfR: the semi-logic of eunfR is the same as
the logic of R and the latter is a normal logic, then cut is in
its 2-metalogic thus it must be in the 2-metalogic of the
semi-logic of exunfR which is exactly the set of permissible rules

of exunfR.

13



ILLUSTRATION

1. The logic 3 and its double

We consider here the intuitionistic implicative propositional
logic 3=<J¥;|—>.

S is built from an underlying set of propositions as usual
with only the connective -».

We consider first this logic in itself independently of any
determination, ie of any system determining it.

Recall that with only X given, the following other logics are
known:

D3, the double of X, ie its set of permissible rules,

2MI, the 2-metalogic of 3.

For any 1i-system who will determine J, its set of derived
rules will be D3

For any 2-system who will determine 3, its set of permissible
rules will be 2M3I.

The first point is that 3 is a normal logic. Thus the
identity and cut rules are in 2M3 and they will be permissible
rules of any 2-system who will determine 3.

Now one thing is sure: 3 is shadowy or not. But another thing

is: a 2-system which determines 3 can be shadowy or not.

Examples of permissible and non-permissible rules of 3:
{rttgs P
{pihps @

9"5‘3 {(p-+p>
{<P+Pttgs 9

14



<{p};q> i= in the shadow of 3.

Now it is time +to emphasize an important point. In our
abstract setting the nature of the objects was not specified. One
predominant. part of logic is what is called formal logic in the
sense that an object of a formal logic can be considered as
constituted by a form and by a content: formal logic is based on
this distinction. In our present example the form of an object. of
¥ is its set of connectives and the matter is its set of
propositions (parentheses can be considered as part of the form
but. in fact they are subsidiary objects and can be eliminated by
the famous method of Lukasiewicz). Now a substitution i=s a
function which lets invariant the form of the object. 3 is a
formal logic:

X|— x iff for every substitution o oOD|— oGoO.

A rule schema is a set of rules which is closed under
substitution. (see [3] for a special account on substitution and
formal logic).

#16 » In the shadow of I there is no rule schema (see [30D.
In other words: X is a schema shadeless logic.
Any 1-system who will determine 3 will be a schema shadeless

logic.

2. Systems for 33

The 1-system 3

X (x3y> o o
t-mp —— 1-pk 1-ps
y (xs{ysxDD CCxCy3zZI D (Y D> {H+ZD D)

15



Straight semi-transformation: the 2-system Uw

%] (%]
2-mpa 2-pk
{x,Cx>yd>} >y O > (x+>Cy»xDD
%]
2-p=s
O > ({xs3Cy+3zZDI3{{X>3yI3{x>+ZID)
O > x {x} >y
cut.®
o >y
Straight transformation: the 2-system U
(%] %]
2-mpa 2-pk
{x,Cx>yd 4 >y O > (x>(y»xdD
1%
2-ps

O > ((x3C(y->3ZII3{{K>Y I+ {H>ZID)D

o X > x {xpY > y
id cut
CxeXD B o=y

Unfolding semi-transformation: the 2-system $w

O > x 0 > (xs>yd o
2-mp9 2-pk
0>y G > (x»{y->»xDD

%)
2-p=

O > ({3 {y+2ZDI)3{{X»3YyI>{HK>ZID)D

16



Unfolding transformation: the 2-system 9

X > x Y > (x>y> %)
2-mp 2-pk
XuY > y O > (x»+{y»xDD

(%]
2-ps

O > (x3(y+Z)I)3 x>y I>{X»ZDDD

o
id
X > % cneXd

By the general results of the precedent section (%12, =13,
14, *15) we know that 3, U and $ det.ermine the same 1-logic.

Now we will consider more sophisticated 2-systems.

The 2-system N

X > x Y > {(x»y> X{x} > vy
2-mp —_—— a1
XuY > v X > (x»y2

o

id
X = X creXd

The 2-system &

X > x Yy} > = Xu{x} >y
>l >
XUYU{(xsyd } > Z X > x>y
(2] X > x Yuxp > vy
id cut.

x*x(xe}C) XY > vy

217 » %, Nt and & are interderivable.

17



demonstration is the so-called

The main point in this
deduction theorem which can be expressed as follows:
%18 P »r is a derived rule of %.
Thus N is derivable from %.

Cut is derivable from {2-mp,sr}:

Yx} >y
-

Y > x>y
2-mp

XUY > vy

+]1 is derivable from {2—mp,cu1’,}- Cmodulo id):

1%
id

(x3yd > (x+yD
2=-mp

Yy} > z

X{xsy p > vy
cut

XUYUdxs>y b > =

Thus & derivable from M.

{2-mp} is derivable from {cut,»1} <(modulo id:

(%) %]

_id —— id

{x} > x {yt >y
>1

X >— (x>yd> {Geayd pudx b >— y
cut

X > x XYx} >y
cut.

i8



{2-ps} is derivable from {+L,»g } (modulo idd:

(%] (%]
_ id ——— id
b =% Ayt >y
»1
o ” {<x+yd,x} >y {z} » =z .
i >
{x} > x {(y+z),(x+y),x} > Z
»1
{(x+(y+z)),(x—>y),x} > Z
%3

O > ({x3{y+zZDI3{x3yI3{x>+2ZDI)D

Thus % is derivable from ®&.

3. The shadow of &-

We now consider the system ®&- which is the system & without
the cut rule.

A 2-rule: <4 <X x>, KKoixeO,... H<X5x>> is said to be
analytic iff the xis and the members of the Xis are all
subformulae of x or of formulae of X, strictly analytic Iiff
moreover the proper subformulae of x and X are only subformulae of
the xis and the Xis.

If we have a set of analytic rules R it is clear that all the
derived rules of R will be analytic.

All the rules in & are analytic, thus:

%19 » The cut rule is not a derivable rule of &-.
220 » & and & determine the same semi-logic (Corollary of the
cut-elimination theoremd.

Now it is clear that the cut rule is a permissible rule of
& C(cf =11, %17 and *%20>. Thus

*21 » & is a schema shadowy logic.

1



We see that T is determined by two non-interderivable
2-systems.

In fact all non-analytic permissible rules of &- are
non—-derivable rules, for example 2-mp. The question is: are all
the rules in the schema shadow of & non-analytic ¢

The answer is negative.

Consider the following rule schema:

X » x
(X<YD.

monotony rule:
Y v

The system €- is often presented with this additional rule.
%22 » The monotony rule is a permissible rule of &-.

Itt is clear that this rule is in the 2-metalogic of any
i-system, and in particular it is in the one of 3, now because &
determines the same 1-logic as 3 {deduction theorem” cut
elimination theorem) it is by definition a permissible rule of &-.

Using #4, we see that if we add this rule to & we obtain the

same semi-logic.

*23 » The monotony rule is not a derivable rule of &-.

Now all the rules in & are strictly analytic and thus all
derivable rules of & are strictly analytic and the monotony
rule is not.

From %22 and #*23 we infer that:

*24 P The monotony rule is in the schema shadow of G-

4. About. the classification of systems
An ordinary classification of systems of deduction is (see
e.g. [B37D:

- Hilbertian/axiomatic



- Natural deduction

- Sequent calculus.

In fact all these. systems can be considered as systems of the
same type: 2-systems, in our examples, respectively: %, 5, G/C-.

Now among 2-systems we can consider various types of systems
according to the type of their rules.

Following Gentzen <(see [11)> rules can be divided in two
classes: structural and non-structural (=operationald rules.

We have the following picture of the repartition of rules:

n :
o)
2mp
>T %] non-axiomatic 2mp o B fal GRS
g | 1a| Melematic pk axiomatic
ps id

non-structural |structural

non-structural |structural

by u
>1
»r |cut| non-axiomatic . PV TS, [ — -
o | ga| *iematic pES axiomatic
mpa| id
non-structural |structural non-structural [structural

In U every step in a proof is produced by the cut rule. Such
a system will be called a barbarian system: it is of a high
interest both from a philosophical and mathematical point of view

{(see [2D.

5. Modus ponens: What is it and how to write it
According section 2 above the modus ponens can be considered

as 1i-mp, 2-mpa, 2-mp& or 2-mp.

21



The first point is that we must not use in all these
symbolisations }— instead of > because a rule is not an assertion
(see [2] for discussion).

The second point is that we must use the right formulation
into the right framework.

To answer the question: what is the modus ponens 7 We must

first state in which framework we are working.

HisToriIcAL NOTE

1. Confusion between 1-concepts and 2-concepts

The usual presentation of what is called an Hilbertian system
runs like this:

a semi-logic is defined by an inductive definition: a =set of
theses is generated from a set of axioms by rules.

This system can be interpreted as a 1-system or as a
2-system, in our examples as 3 or as Hw.

When this definition is extended as to go from semi-logic to
logic the ambiguity is still there, in our examples: 3 or 9.

In [19] <(Kleene)> these systems are considered as 1-systems
{191 p.8B3, p87 and p.88> but G.Sundhom I[37] considers them
rather as 2-systems.

It i=s not clear at all in this context. whether a rule is a
i-rule or a 2-rule. Kleene considers rules as 1-rule ([19]
pp.82-83> but what he calls a derived rule (191 pB6d is a
2-rule. In the same way what Church calls a derived rule is a

2-rule (4] p8B3, po93, po4, p.165>. In fact derived rules are

22



considered by Kleene and Church as metamathematical theorems ([19]
p.86, [4] p.83>. Derived rules are here what we have called
2-metalogical rules, ie 2-permissible rules and there are not
distinguished from 2- derived rules which are not explicitly
considered.

For example the deduction theorem is considered as a
metatheorem (a derived rule>. But if we are working really in
i-systems, this is not a derived rule. Dummet is misleading when
saying that the deduction theorem states that »+ (=»rdis a derived
rule of his 1-system Ax (18] p.127>. In our examples: the
deduction theorem is a derivable rule of % but not of 3. It is a

2-metalogical rule of 3.

2. Permissibility

The notion of permissible rule was putting forward at the end
of the fifties by P.Lorenzen [21], Moh Shaw-Kwey [35], Hiz [17)
and later studied by K.Schiitte {32), H.Wang [42], H.C.Wasserman
[43], W.A. Pogorzelski [26].

what was emphasized is that the set of permissible rules is
not stable by extension of systems: a permissible rules can ceased
to be permissible if we extend the system. But note that the
converse is false: a permissible rule can be permissible in all
the extensions of a system, this is the case of the cut rule in &-
C(if we consider extensions in the natural way: by schema of rule).

The concept of permissible rule appeared as a strange
phenomenon mainly because of things described in our remark
following *5.

Althought, as we have seen in the precedent section, the



distinction between 1-systems and 2-systems is rather confused it
seems that the concept of permissible rule was developed
essentially in the framework of 1-concepts. The fact that the cut
rule is a 2-permissible and not a 2-derived rule was never stated
clearly.

JPorte [291 was the first to make an explicit distinction
between systems (‘systémes Ilogistiques’, but such systems are
considered independently of the logic they determine), =semi-logic
(systemes thétiques> and logic (systémes déductionnels) and to
study their relations. But the distinction between 1i-systems and
2-systems is not explicit. He gives the following definitions
<[29] p.35>: a primitive rule R is T-independent from a set of
rules R iff the semi-logic of R-{R} is the same as the semi-logic
of ® and a primitive rule is D-independent iff the logic of R-{R}
is the same as the logic of R. If we interpret these definitions
for 2-rules and 2-systems, using this terminology it is clear that
in Uw the identity rule is T-independent but not D-independent.
But what is strange is that Porte says (<291 p.37> that the cut
rule is D-independent and not T-independent, but in & it is
T-independent and not D-independent.

The fact. that the status of the cut rule is not clear appears
for example in an article by D.S.Scott where he says: “In many
formalizations a great. deal of effort is expended to eliminate cut
as a primitive rule ; but it has to be proved as a derived rule.
In general, cut is not eliminable <(.>. It is only for some very
special relations <(.> that the rule can be avoided as an
assumption.” ([35] p.414).

We must emphasize the following points. The cut rule is not a
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derived rule of the system &-. It is very easy to find a system
for X where cut is not a primitive rule but is a derived rule,
eg. N and %. To prove in such a system that cut is a derived rule

has nothing to do with the cut-elimination theorem of Gentzen.

3. On the interpretation of Gentzen’s symbol »

As it is known Gentzen writes a sequent with ». But the
signification of this symbol is not really clear. Obviously
Gentzen took this symbol from Hertz (see Gentzen [10] 1932)>. We
must. recall that Whitehead and Russel use the symbol > for
implication and also as a kind of meta-implication <0441 1910).
Hilbert uses the symbol -+ for implication <141 1922>. In this
context the use by Hertz of the symbol » is not clear at all,
though he himself says that he uses it as the formal implication
of Whitehead and Russell (0131 p.247 footnote one, 1922). It is
clear that when Gentzen uses this Hertzenian symbol, it is not
formal implication, in fact he uses > for formal implication. We
have introduced here the symbol > because we are using -+ for
implication. In any case it is absurd to use |- for the Gentzenian
symbol -» but. it appears that it is wuseful to use a more
suggestive symbol than ¢’ or %’ as in [8]l. The symbol > seems
good because it suggests a connection with |—sbut the left part is
not the vertical stroke used by Frege (9] 1879 to symbolize the
assertional mood. (For a special treatment of this subject see
2.

The way Gentzen writes rules permits directly the
interpretation that we have made here, ie the distinction between

two strictly parallel systems d{I-systems and 2-systems)>, and which
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was in fact developed by G.C.Moisil which considered a hierarchy
of calculi according to the complexity of the underlying objects

[23X241].

4. On the theory of the consequence operator

At the end of the twenties, Tarski introduced the consequence
operator Cn [39]). Obviously this is a general treatment of
i-logic. But not of 1-systems. The idea of Tarski was to provide
an axiomatisation of the notion of deduction as it appears in
every deductive theory [40][41). In fact this is an axiomatisation
of 1-systems of deduction as we can see by the chosen axioms for
the consequence operator. The axiomatisation of the deduction can
be viewed as a system of deduction but in fact Tarski never used
the concept of rule in this context {(see 1] £7] for
commentaries). The notion of rule was given for the first time in
the framework of the theory of the consequence operator by Los and
Suszko in 1958 [22]. This definition is a very general definition
of 1-rule which i= gquite similar to the one presented here, but
they define the notion of rule on a set & which is taken as an
absolute free algebra, a vision of the ordinary set of
propositional formulae which permits to give a definition of
schema in terms of endomorphisms, what they call a structural rule
{this word i= used in a different way by Gentzen, see sect2,
part2). Although Suszko [38] was aware of the discoveries of Hiz,
the notion of permissibility was directly treated only later by
W.A.Pogorzelski [26] who has defined the notion of derivable and
permissible rules inspired by HWang [42]. He has introduced the

notion of structural completeness of a system [26): every
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structural permissible rule is derivable. In this context
structural completeness has been systematically studied [28] and
for example T.Prucnal [30] has proved the structural completeness
of the implicative intuitionistic propositional logic <d{cf *16).
But all this takes place in the context of 1-concepts. To study
2-systems in the context of the structural theory of consequence
operator one need to consider the basic set as a more complex
algebra, with two types of functions. In fact 2-systems were
studied only later in this context [45] and the notion of
2-derivability, 2-permissibility and 2-structural complet.eness
have not. been studied yet in the framework of the theory of the

consequence operator.

Our present exposition was inspired by several works of
N.C.A. da Costa (see e.g. [12)20)> who has defined the notion of
i-system and i-rule in a very general way. A first development of
abstract definitions of 1-system and 1i-rule as well as of 2-system
and 2-rule has been presented by N.CA da Costa and the author in

[5].
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