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Abstract
We discuss some logico-mathematical systems which deviate from classical logic and mathematics
with respect to the concept of identity. In the first part of the paper we present very general
formulations of the principle of identity and show how they can be ‘relativized’ to objects and to
properties. Then, as an application, we study the particular cases of physics (the transgression of the
principle of identity by quantum objects) and logic (some logics in which the principle of replacement
is not valid are presented). In the last part of the paper, we discuss the alphabar logics, that is, those
logical systems which violate a formulation of one of the most fundamental versions of the principle
of identity; in these logics, there are formulas which are not deducible from themselves.

1 Introduction

“Obviousness is always the enemy of cor-
rectness. Hence, we must invent a new and
difficult symbolism in which nothing is ob-
vious.”

Bertrand Russell

One of the most ‘obvious’ principles in which classical logic is based is the principle of
identity. There are several and non equivalent ways of formulating this principle, as
we will recall in brief below. By the sake of correctness, perhaps it would be better to
say that there are various non equivalent mathematical formulations, some of them
expressed by logical means, which are usually referred to as ‘the principle of identity’.

Let us recall that every mathematical interpretation of philosophical ideas or prin-
ciples is in certain sense always dubious and subject to criticisms and, despite the
mathematical method has been proved to be successful in many ways, mathematical
interpretations of fundamental principles of thought (or reasoning) are often more
difficult and controversial. Anyway, we will try to show that such a method is fruitful
also in the case of one of the most fundamental principles of logic and mathematics
and even of science in general.

The principle of identity has been investigated from various points of view, such
as philosophically, mathematically (such as in algebra, where the principle of identity
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is fundamental, as the notion of an equation shows us), as well as logically (cf. the
classical books of modern logic).1 In this work, we will present a rather different
approach involving some new mathematical systems.

The main objective of the paper is not to investigate the principle of identity ‘di-
rectly’, but to study the possibility of obtaining some interesting and useful relativiza-
tions of this principle. We begin by giving an account on the principle of identity as
inspired by Leibniz’ ideas. We present very general formulations of that principle,
which are valid for objects and for properties. We also show how to relativize these
formulations at the abstract level and then we present some particular applications
to philosophical problems concerning both quantum physics and logic. Finally, we
discuss a more fundamental and ambiguous formulation of the principle of identity:
‘every object is identical to itself’. In logic, an interpretation of this formulation is
A ` A (every formula is deductible from itself); then, we present logics which violate
such a principle; we call these systems alphabar logics.

A more detailed discussion about the relationships between the development of
logics in which some ‘deviation’ from the theory of identity of classical logic and
mathematics and the foundations of physics, in particular in what respects the logical
basis of quantum mechanics, can be found in our papers [6], [7], [11], [18], [19], [28],
[29] and in certain sense also in [3], [8], [9].

2 ‘Abstract’ formulation of the Principle of Identity and its
relativizations

It is commonly agreed that the concept of identity formulated in classical logic and
mathematics, so as in the majority of the most known logical systems, is closely
related to Leibniz’ ideas [10], [4, p. 300]. This is essentially due to the manner by
means of which this concept is introduced in these formalisms. Despite the differences
in the definitions, due to the level of the employed language, the general idea of
indistinguishability is used to define identity. In other words, in all these systems
identity between objects is defined2 by means of ‘agreement with respect to attributes’
or then by the fact that all that can be said of one thing can also be said of an
‘identical’ one (the substitutive law, mapped in Leibniz’ dictum “eadem sunt quorum
unum potest substitui alteri salva veritate” [4, p. 300], [21, ft. 1], which is also a form
of indistinguishability (see below).

Leibniz stated that there are no two different entities with all their attributes in
common. As it is well known, he formulated his principle of the identity of indis-
cernibles (PII) in several places of his work, but apparently always in the negative
(cf. [39]): (in short) if things are distinct (not equal) then there exists some qual-
ity which distinguishes them. The ‘translation’ of PII to the languages of logic, in
particular to the ‘positive form’, is by our own (see below). Notwithstanding, even
by paying the price for the lack of an adequate interpretation of Leibniz’ thought in

1 See for instance [36, 46, 23, 39, 21].
2 The word ‘definition’ must be understood here in a very general way, encompassing for instance what might

be called ‘definitions by postulates’, as when we introduce (the primitive concept of) identity in first-order logics
by stating the usual axioms of reflexivity and substitutivity, which in certain sense ‘define’ that concept e.g., [31,
p. 74]. Some authors like Savellos [37] maintain that identity cannot be defined, but must be taken as a primitive,
indefinable notion. According to Savellos, all ‘definitions’ of identity are circular in the sense that all of them
presuppose identity itself. Even so, the axioms state identity in a rather ‘Leibnizian’ way.
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this paper, we will agree with some authors that there is a sense in saying that the
concept of identity in classical logic and mathematics is ‘Leibnizian’ [9]. In reality
we must be careful concerning this; the particular formulation of Leibniz’ principle
in first order logic makes reference to objects which are not space-time objects, while
Leibniz’ original versions of PII apparently is more concerned with ‘concrete’ objects,
that is, space-time located entities.3 In fact, by using the languages of modern logic,
it is possible to interpret this principle as referring to objects of any kind, includ-
ing ‘abstract’ objects, such as properties, numbers or other mathematical objects.
From the philosophical point of view, this interpretation seems to constitute a very
important generalization of Leibniz’ original principle.

2.1 General ‘informal’ definition of the Principle of Identity
The general ‘informal’ definition of the principle of identity (in short, PI) to be con-
sidered here is the following:

Two objects are identical iff they share the same properties.

This formulation in ‘neutral’ in the sense that it can be interpreted both ‘ob-
jectively’, that is, the objects’ properties do not depend on the knowledge of the
objects themselves (that is, the formulation is not epistemic), and ‘subjectively’, in
the sense that the identification of the objects depends on the conceptual framework
of the theory. It is rather this second interpretation which leads to the notion of
indistinguishability . In order to relativize this ‘informal’ PI, we may consider two
possibilities: the relativization of PI concerning objects and the relativization of PI
concerning properties.

2.1.1 The ‘objectual’ relativization of PI
With respect to objects, we use the following ‘objectual’ relativization of PI: x = y
iff for every property P , if x has this property, then y has it too, and there exists a
property Q such that both x and y have Q.4

2.1.2 The ‘conceptual’ relativization of PI
x and y are identical relative to a collection of properties C iff for every property
P ∈ C, x has the property P iff y has it too.

More specific formulations of these two relativized forms of PI will be discussed in
the next sections.

2.2 Very general ‘formal’ definition of the PI
The ‘formal’ PI to be considered here is:

3 The discussion of this point is very interesting, but we do not intend to consider it here.
4 There is a clear analogy between this formulation and the concept of relative identity, mainly in considering

the analysis of the expression ‘x is the same Q than y’ [20], [46, pp. 82ff].
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a is identical to b, in symbols, a = b, iff for all property P , object a has property P
iff object b has it too.

Depending on the level of the language we use, there are various different and non
equivalent ways of formulating this principle, as for instance:

2.2.1 Identity between formulas
For example, in the quantified propositional calculus [40]. If F andH are propositional
formulas, then

F = H iff ∀G(G[F ]↔ G[H])

where F and H are subformulas of G.

2.2.2 The first-order formulation
If x and y are individual variables and F is a formula, then for all x and y:

x = y iff F (x)↔ F (y)

This schema encompasses an infinite collection of formulae, one for each F ; in the
higher-order logics, it is possible to simplify it, as for instance in the second-order
logics.

2.2.3 The second-order formulation
If x and y are individual variables and F is a predicate ranging over the set of predi-
cates, then for all x and y:

x = y iff ∀F (F (x)↔ F (y))

By using the concept of logical equivalence,5 we may formulate the principle of
identity without using specific connectives. For instance, in the Zero-Order formu-
lation, two propositions are identical iff in any context one of them can be replaced
by the other by preserving deduction. This form of the ‘substitution law’ will be
discussed in Section 4.

2.2.4 The set-theoretical formulation
In set-theoretical terms, for instance in ZFC, we can state the PI as follows: for every
sets x and y,

x = y iff ∀z(x ∈ z ↔ y ∈ z)

which is a particular case of the first-order PI mentioned above. The reason for
having mentioned this version explicitly is that a particular version of this principle
is violated by the ‘quasi-set theories’ (see the next section).

5 That is, A and B are logically equivalent iff from A we can deduce B and conversely, where the notion of
deduction is primitive, in accordance with the ideas of Tarski.
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3 The conceptual relativization of PI and quantum physics

The relationships between PI and physics have been pointed out in the literature
from several points of view, but we will not recall all the discussion on this point here
[15, 14, 27].6

Let us begin by formulating in a more formal way the conceptual relativized form
of PI, very roughly stated stated above.7

In a convenient higher-order language, if x and y are individual variables and F is
a variable ranging over a certain collection C of properties of x and y, then:

x =C y iff ∀F (F ∈ C → (F (x)↔ F (y)))

and in this case we say that x and y are ‘identical relative to C’.8
The relativized conceptual principle of identity may be applied, at least in principle,

to every domain of ‘objects’, even abstract ones as mentioned above. But let us
consider the very particular case of quantum objects, commonly called ‘elementary
particles’, which deviate from the ancient notion of ‘little bodies’, individuatable9

entities having a permanent and well defined genidentity , like the physical objects
described by classical physics.10

In what sense may we say that quantum objects provide a way of violating the
Leibnizian concept of identity? The first answer would be the assumption that their
individuality is provided by some ‘quid’, a substratum which transcends the collection
of their properties. In this way, although two objects x and y might agree in what
respects all their attributes, they could be distinguished by their quid, despite the
well known philosophical controversy on the nature of such a substratum [15]. But it
has been claimed that quantum objects are entities which are devoided of any kind
of substratum [32]. Philosophers have also shown that the very idea of quantum is
incompatible with ‘primitive thisness’, haeceitty and the like [34], [35], [41].

In fact, the elementary particles are characterized in quantum theory according to
their possession of different values of a certain number of constant properties, the
‘intrinsic properties’. Without any compromise with philosophical ways of thought
(which will be not mentioned here), one could speculate on this topic from at least
three points of view: firstly, in saying that the ‘veiled’ reality, to use a term coined by
d’Espagnat (see [12]), does not show their basic elements completely; so, we could not
know all the properties of the ‘particles’, and this could sustains the thesis that this is
the motive we consider them in groups (of ‘identical’ particles). The second hypothesis
is that the formalism of quantum theory is ‘incomplete’ in what respects individuation
in not providing all the necessary tools for individuating a ‘particle’ in all situations.11

6 See also the papers listed in the footnote 2.
7 The formulation we use here is an adaptation of the concept of ‘relative indistinguishability’ presented in [6].
8 More precisely, in the definition it should be supposed that C is a predicate of type 〈〈i〉〉, while F is a variable

of type 〈i〉 and i is the type of the individuals, where x and y. Then, instead of F ∈ C, we could write C(F ).
One example of the use this principle in quantum physics is the definition of the concept of identity of elementary
particles given in [22, p. 275]: in short, two elementary particles are ‘identical’ iff they agree with respect to all
their state-independent (or ‘intrinsic’) properties. See [6].

9 We use this word in the sense of Redhead and Teller’s works. See their works mentioned in the references.
10 It is not surprising that recent literature little by little has been substituting the word ‘particle’ by others

which do not suggest the intuitive idea of a body, despite the controversies even in this point. For instance, B.
d’Espagnat, in the early 60s, have already used the word ‘quanton’ in the same context [12], that is, in trying to
avoid the word ‘particle’. Teller [41] prefer to use quanta, despite there is no agreement concerning the terminology
in the literature.

11 This possibility was also supposed by van Fraassen, but he rejected it [44] –see also [45].
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The third possibility sustains that the very ‘nature’ of quantum objects is such that
they cannot be viewed as individuatable entities, even conceptually. Schrödinger,
in particular, maintained this point of view [38]; see also [32] and, more recently,
Redhead and Teller [34, 35]. So, from this last view, the quanta are characterized
by no more than certain collections of attributes done by physical laws: they are
nomological , as expressed by Toraldo di Francia [43, p. 222], [9].12

So, under the hypothesis (roughly) described above, we are committed with the
following assumptions in what respects quantum objects: (1) they are objects charac-
terized in groups, not individually, by means of certain bundles of properties. Hence,
there is no substratum being supposed, and quantum theories might be viewed as
‘negative’ theories concerning the concept of substance [36]; (2) due to the nomologi-
cal nature of quantum objects, it is not necessary to admit that quantum formalism is
not incomplete with respect to individuation. In other words, the intrinsic properties
characterize the entities, in the sense that such properties (physical laws) provide all
information about them [42], that is, they are all the relevant (or ‘essential’) proper-
ties to be considered. Then, if we take the set C of the above definition to mean the
collection of the intrinsic properties that characterizes a certain kind of quanta, it is
easy to see that the conceptual formulation of PI is incompatible with (1) and (2), for
if PI in that form would be valid, then all quantum objects of the same kind would
be the very same entity (since x = y means, in usual mathematics, that x and y are
no distinct objects).13

3.1 The violation of the set-theoretical version of PI
Quasi-set theories were developed to provide a mathematical framework for dealing
with collections of indistinguishable (but not identical) objects [9, 24, 25]. These
theories can also be used to built structures necessary for the semantical analysis
of the theories of microphysics, so as to mathematically express the quantum fact
that in quantum physics there are predicates (like ‘electron’) which have no a precise
reference and ‘objects’ which have no names.14 One of the main motivations of these
theories is that collections of quantum objects apparently do not obey the axioms
of standard set-theories [25, 9, 11]. The basic motive is that collections of quantum
entities seems to present an intensional behaviour rather than act as extensionally
well-defined sets.15

An interesting result is that Leibniz’ principle of the identity of indiscernibles is
violated in quasi-set theory. In fact, in this theory the following implication is not
valid in general: x 6= y → ∃Qz(x ∈ z ∧ y /∈ z), where the quantifier is relativized to
quasi-sets, since the set-theoretical particular instance of this rule, v.g., the expression
x 6= y → x ∈ {x}∧ y /∈ {x} cannot be repeated in these theories. More details can be

12 A fourth position could be mentioned: French and Redhead [14] have shown that quantum objects may be
consistently viewed as ‘individuals’ at the expenses of assuming certain restrictions on the states they can assume.
But even so, as they have shown, PI is violated by bosons, fermions and also by higher-order paraparticles, treated
in first-quantization. The various formulations of PII as presented by French and Redhead may be easily adapted
to the formulation of the conceptual PI stated above.

13 A theory where x = y can be read as meaning ‘indistinguishability’ and not strict identity was formulated in
[6]. See also [25], [27].

14 For details concerning these points, see [8, 9, 25, 27, 7, 11].
15 It has been claimed that systems of microobjects can be described as a kind of ‘intensional-like entities’ [9]

–see also [11], and even the relations between the concepts of intensions an extensions turn to be quite different
from the classical cases [ibid.].
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found in [11].

4 Objectual relativization of PI in Logic

If we consider a logic as a pair 〈L,`〉 (see [2]), we can say that two objects a and b of
the domain of L are identical if and only if they are logically equivalent, i.e., if a is
deductible from b (in symbols: {b} ` a) and vice-versa. It is important to note that
this schema makes sense only if the relation of logical equivalence is a congruence
relation, i.e., if it is compatible with the underlying structure of L, for example, in
the standard zero-order logics, the absolute free algebra 〈A, 〈¬,∧,∨,→〉〉. In classical
propositional logic, intuitionistic logic, usual modal logics (S4, etc.) and many other
logics the relation of logical equivalence is a congruence relation. However, this is not
the case for example in the paraconsistent logic C1. In this logic, a ∧ b for instance is
equivalent to b∧a, but ¬(a∧ b) is not logically equivalent to ¬(b∧a). For this reason,
it is not possible to algebraize C1 in the usual sense, taking the quotient given by
the relation of logical equivalence. C. Mortensen has shown that the only congruence
relation compatible in C1 is the trivial one (every object is equivalent to itself). This
of course constitute a strong defect of C1, since it means that in this logic we cannot
even to identify well-behaved logically equivalent formulas. Thus even since it is
possible to embed classical logic into C1, we cannot deal exactly with classical logic
inside paraconsistent logic as we deal with classical logic in general.

One solution to this problem has been provided by one of the authors of this paper
[2, 5] with the logic C+

1 , which is a nice example of the objectual relativization of
the PI. In the paraconsistent logic C+

1 , which is an extension of the logic C1, we can
identify two well-behaved logically equivalent formulas. That is to, if we restrict
the relation of logical equivalence to the set of well-behaved formulas, then it is a
congruence relation.

5 Alphabar logics

The expression P ` P (P is deductible from P ) is also very often called the law of
identity. This can be explained by the fact that the deductibility relation is taken to
be the basic relation between propositions or between formulas. But of course to say
that the relation is reflexive (i.e., the stated law asserts nothing less, nothing more
than that P is deductible from P ) is not to say that it is an identity relation since
not every reflexive relation is an identity relation. The confusion arises especially
among philosophers and can be explained (but not justified!) as follows: sometimes
the identity law is expressed by a = a, that is, every object is identical to itself, but
if this is to be correct, then we must add that every object is different from any other
object. That is to say, identity is the diagonal relation. Of course this definition is
reasonable. But we can also say that all congruence relations are identity, the diagonal
relation being the finest one.

Then, having all this in mind, we see that it is very dangerous to call ‘P is deductible
from P ’ the identity law or even that it is one of the formulations of the identity law
since, firstly, the deductibility relation rarely is the diagonal relation and also since it
is not necessarily a congruence relation (cf. Section 4 above).

Then, we prefer to call this law the autodeductibility law , and in this section we will
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see that it is possible to built logics in which this law is not valid, named Alphabar
Logics, in honor of the Persian logician Alfabari.

To begin with, let us consider a very natural question, which can be consider with
respect to the autodeductibility law: is this law a ‘natural’ law ?

To answer this question, we firstly could find an ‘intuitive logic’ in which this law
is false (this shows that it is necessary) and, secondly, it would be interesting to show
that this law is not so much evident to be rejected.

Concerning the first point, consider for example a logic16 which is defined in such
a way so that a formula F is deductible from a theory T iff there exists a consistent
subtheory of T such that in this theory F is classically deductible. Then, it results
that {F ∧ ¬F 6} ` F ∧ ¬F .

On the other hand, a reason for rejecting the law of self-deductibility could be based
on the desire ‘to clean formal mathematics from trivial things’. In fact, the law of
autodeductibility apparently can be regarded as a triviality: if we are interested in
knowing what kind of theorems can be proved in Arithmetic, we are certainly not
interested in knowing that from 1 = 0 we can deduce 1 = 0.

But this is of course not so. In what follows, we will examine the basis on which this
law appears as a valid law in the usual logical systems and how it can be derrogated.

5.1 General conceptual framework
From a very general and abstract point of view, a logic L can be viewed as a pair
〈F ,`〉, where F , the domain of L, is a set of objects called formulas and ` is a
relation between theories (subset of formulas) and formulas. This relation is called
the deductibility relation of L. To define a logic, we may use one among various
possible methods, such as the proof-theoretical method , the model-theoretical method
and the consequence operator method , and all of them include various sub-methods.

A logical law is a condition on the relation of deductibility. This condition can be
more or less complex; famous examples other than the law of self-deductibility are
the following ones:

1. Law of Monotony: If F is deductible in T , then F is deductible from every
extension of T .

2. Cut Law: If F is deductible from T ′ and if each element of T ′ is deductible from
T , then F is deductible from T .

Given a particular method, an external law is a law which is induced by this method,
i.e., every logic built up by this method obeys this law. On the contrary, an internal
law is a law which is independent of the considered method. Some examples will be
done below.

5.2 The self-deductibility law from the proof-theoretical point of view
In the proof-theoretical method, the relation of deductibility is defined through the
notion of proof ; correlated concepts are those of axiom and (inference) rule.

16 This is a variant of the paraclassical logic presented in [33].
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5.2.1 Frege–Hilbertian systems
An axiom is a formula, and a rule is an ordered pair whose first element is a theory,
the set of premises of the rule, and whose second element is a formula, the conclusion
of the rule. The notion of provability is defined as follows:17 F is provable in T iff
there is a sequence of formulas such that F is its last member and every member of
the sequence is an element of T or is an axiom, or is the conclusion of a rule whose
premises precede it in the sequence.

In this method, the autodeductibility law is an external law (as well as the cut law
and the law of monotony). The crucial point in the definition is the concept of to
be an element of T . This clause induces in fact the infinitary self-deductibility law.
We can drop this clause; in this case the set of theorems (i.e., formulas which are
provable from the empty set) is preserved. But a most convenient idea is to modify
this definition by substituting is an element of T different of F by is an element of
T . In this case, we have in the so modified classical logic: F ∧G ` F , F ∧G,F ` F
and H ∧ G,F 6` F . In fact, if F 6∈ T , then F is deductible from T in the orthodox
way iff it is deductible from T in the modified way.

5.2.2 Hertz–Gentzenian systems
A sequent is a pair of theories, in symbols: T → T ′. An axiom is to be understood
here as a pair formed by a sequent and a rule in such a way so that the premises
and the conclusion are sequents. The definition of proof runs like this: ‘F is provable
in T iff there is a sequence of sequents such that T → F is its last member and
every member of the sequence is an axiom or the conclusion of a rule whose premises
precede it in the sequence’.

In this case, the law of autodeductibility is not external. In all these systems, this
law is more or less directly induced via the definition of proof by a schema of the
following type:

1. Atomised Identity Schema: A→ A for all atomic formulas A
2. Generalized Identity Schema: F → F for all formulas F .

In the majority of the systems it is not possible to reduce the generalized identity
schema to the atomised one. For example, in the so-called natural deduction systems
this reduction is not possible. But such a reduction is possible in the so-called sequent
calculus systems, when the connective rules are symmetrical, as for instance in the
intuitionistic system or in the classical system. But for example if we drop one of
the negation rules of classical logic, then we obtain a system in which this reduction
is not possible anymore. In the case where the reduction is possible, the law of self-
deductibility is induced by the atomised axiom schema and by structural properties
of the system, which preserve identity through complexification.

It is very easy to obtain alphabar logics when the reduction is not possible by
rejecting the generalized schema and keeping only with the atomised one. But in this
case the systems obtained are much weaker than the original ones. For example in a
semi-negational system it is not possible to prove that: ¬F ∧G ` ¬F .

17 We emphasize that this definition is neither due to Frege nor to Hilbert.
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5.3 The autodeductibility law from a model-theoretical point of view

5.3.1 The Bolzano–Tarskian definition
The orthodox model-theoretical definition of deductibility is the Bolzano-Tarskian
one: ‘F is deductible from T iff every model of T is a model of F ’.

The general prerequisite for this definition is a set of models M and a function
mod which associates to each formula and each theory a set of models. Such a pair
S = 〈M,mod〉 is called semantics .

In the case of the Bolzano-Tarskian definition, the autodeductibility law is external,
induced by the fact that mod(F ) ⊆ mod(F ).

5.3.2 Semantical crossing
A very general way of constructing alphabar logics from a model-theoretical point of
view is by the method of semantical crossing .

Given for example two semantics S1 and S2, we have the following definition: ‘F is
deductible from T iff every S1-model of T is an S2-model of F ’.

Then, we have an alphabar logic iff there exists F such that mod1(F ) is not included
in mod2(F ). Extending this idea of defining a model-theoretical deductibility relation
by using several semantics, we can construct alphabar logics in many other ways.

5.3.3 The adequation problem
In [2] we have shown that logics which verify the law of autodeductibility, the law
of monotonicity and the cut law (normal logics) are exactly Bolzano-Tarskian logics.
The question now is how to extend this result to alphabar logics in finding a general
model-theoretical method to define them. We consider here cut-logics, i.e., logics
which verify the cut law.

We construct two canonical semantics in which models are theories of the given
logic and in which the modelisation functions are defined as follows:

1. In the first case, mod1(T ) = {T ′ : ∀F (F ∈ T → T ′ ` F} ∪ T
2. In then second case, mod2(T ) = {T ′ : ∀F (F ∈ T → T ′ ` F}

Then, by semantic crossing, we define the relation of deductibility: T ` F iff
mod1(T ) ⊆ mod2(F ). It is easy to see that with this definition we have a general
completeness result for cut-logics, and in particular for alphabar logics which are also
cut-logics.

5.4 The law of autodeductibility from the point of view of the
consequence operator method

In the consequence operator method (due to Tarski), the deductibility relation is
defined through a function Cn from the power set of the domain of the logic to itself.
The usual conditions imposed on this function include the following one: T ⊆ Cn(T ).
This condition is in fact directly equivalent to the infinitary self-deductibility law.
Thus, in this framework the law of self-deductibility appears as an external law. It is
possible simply to throw it away and keep only with the two other laws T ⊆ T ′ →
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Cn(T ) ⊆ Cn(T ′). The question is to know in which extend the methods used in
this framework can also be applied for this weakened function. The study of this
subject has been developed by G. Malinowski [30], who has reinforced the second law
in Cn(T ∪ Cn(T ) ⊆ Cn(T ) and thus constructed the theory of a quasi-consequence
operator .
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