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Abstract

This article sets forth a detailed theoretical proposal of how the truth of ordinary empirical state-
ments, often atomic in form, is computed. The method of computation draws on psychological
concepts such as those of associative networks and spreading activation, rather that the concepts
of philosophical or logical theories of truth. Axioms for a restricted class of cases are given, as well
as some detailed examples.
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1. Introduction: the problem of truth computation

In this article we try to give an account of how one determines the truth or falsity of
sentences likeParis is the capital of France, Paris is not the capital of France, Rome is
the capital of France

We want to describe the computations underlying the answers given, taking into ac-
count, at least in a qualitative way, the time faret-what psychologists call the latency of
a response. Our theory should be able to explain the data gathered by experimentation, for
example, why it takes more time to give a negative answer than a positive one, be it true or
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false. But the important theoretical question is what is the actual method of computation,
a problem not ordinarily considered in philosophical theories of truth, but also not subject
to direct empirical observation.

2. Background of the theory
2.1. Philosophy and logic

Philosophers discuss at length various tireof truth—coherence theory, correspon-
dence theory, problem of direct referencens®and denotation, and so on—hbut, curiously,
do not give an account of how we actually perform truth computations, and even less why
we are able to perform them so quickly. Philosophers who claim that “Paris is the capital
of France” is true because Paris is the capital of France are generally not interested in ex-
plaining how we actually compute the answiut, since such sentences are almost never
remembered, or even previously enatered, a computation is necessary.

Logicians also do not solve these problems. If we want to describe how one answers a
guestion like “Is 49+ 13 equal to 617", it is certainly wrong to look at the logical foundation
of arithmetic, whether it is proof-theoretical or model-theoretical. We answer a question
like “Is 49 + 13 equal to 61?” by using a series of small computational algorithms and
tricks, not by looking for a formal proof from a set of axioms or by finding a model in
which the axioms are true and 4913 = 61 is false. In the case of a question like “Is
Rome the capital of France?”, it is even more doubtful that we are trying to deduce the
truth or falsity of the sentence from a set of axioms, or by using a truth-table.

From our point of view it is misleading to say that we are makidgductiorto arrive at
the conclusion that “Rome is the capital of France” is false, unless we strongly emphasize
that deduction does not reduce to the narraeaning of deduction in formal logic. To
avoid misunderstanding, it is better to say that we are here trying to describe how we
computethe truth and falsity of such a sentence.

Logicians do not deal with this kind of problem. As stressed by Woods, they “have
generally stopped short of trying to actuallyesify the truth conditions of the basic atomic
propositions in their systems, dealing mainlith the specification of the meanings of
complex expressions in terms of the meanings of elementary §t@&g3. 220] According
to Woods, researchers in artifitiintelligence arerying to find an alternative solution
where logicians failed. But do they have a solution?

2.2. Atrtificial intelligence andomputational linguistics

Theartificial intelligence paradoxs described as follows by Hélldobler, commenting
on a paper by Shastri and Ajjanagadde, in which they propose a possible solution to this
paradox, which is “the gap between the abilifyhumans to draw a variety of inferences
effortlessly, spontaneously, and with remarkable efficiency, on the one hand, and the results
about the complexity of reasoning reported bgearchers in artifial intelligence, on the
other hand’[13, p. 463] This paradox shows very well that most research in the field of
artificial intelligence does not solve our problem. In order to compare our approach with
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the various approaches of Al researchers, or those working in computational linguistics, it
is important to emphasize that, generallysitiot clear what they are trying to describe. Is
it reasoning, processing of language, deduction, or something else?

In computational linguistics people are more interested in syntax: formal grammars,
parsing of sentences, and so on. In Al, people are more oriented towards semantics, for ex-
ample, the development of semantic networks. However, the status of such networks is not
clear from the viewpoint of the distinction between syntax and semantics. Woods remarks
that “The question of what (semantic) networks have to do with semantics is one which
takes some answerinl9, p. 218] Distinctions between inference, truth and meaning are
not clear in semantics networks, which are a mix of many things. Anyway, it seems, from
our viewpoint, that the orientation taken by Al researchers is better than the one taken by
computational linguists, because with sem@networks they are trying to find a shorter
path without going into the syntax and logical representation of natural language.

In a recent book on computational semantics, the authors, Blackburn and Bos, say:

The book is devoted to introducing techniques for tackling the following two questions:

1. How can we automate the process of assimgaemantic representations with expres-
sions of natural language?

2. How can we use logical representations of natural language expressions to automate
the process of drawing inferencd87? p. iii] .

Their idea is to find some algorithms to translate natural language into the language
of first-order logic to represent the meaning of natural-language sentences and then to
find some additional algorithms to make inferences with these first-order translations. The
two steps seem wrong for our purpose. It is doubtful that our brains use first-order logic
to compute empirical truths. Both Al researchers and computational linguists have been
over-influenced by formal logic. They do not deal directly with the problem of finding the
obvious truth or falsity of atomic statents like “Rome is the capital of France”.

2.3. Associations

We share with Al researchers an emphasiassociationgsometimes in Al, “semantics
networks” are also called “associative networks”). When answering a question such as “Is
Paris the capital of France?”, we are using aos which are associated with the input, like
Eiffel Tower with Paris, or country with capital. Our purpose here is to try to explain the
mechanism of such associations, in connection with the question of truth and falsity (in
this point we differ from Al researchers who are concerned with broader problems). But
our description should not depend crucialylanguage, even though we are working with
linguistic examples, since we think that this mechanism has a common root in processes
involving any language, nonverbal animal behaviour, and stimulus-response phenomenain
general.

The viewpoint here is that an associative network is a set of nodes with links between
them. One central question is how an asso@anetwork is organized. An interesting
proposal about the global organization of the lexicon in English, based in psycholinguis-
tic considerations, has been made by the Wordnet project. The organization is based on
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three pairs of relationship: antinomy-synonymy, hyperonomy-hyponymy, and meronymy-
holonomy (se410,14). However, this classification presents several serious limitations,
in particular, it does not address the analysis of truth computations.

We will not present any general theory of organization of associative networks, but will
focus our attention on how truth computations fit into associative networks. For us ‘true’
is here no mysterious entity, but a word in the associative network, like ‘Paris’ or ‘capital’.
Our main task is to explain, given an input like ‘Paris is the capital of France’, what hap-
pens in the associative network. Our idea mttirue’ or ‘false’ become linked with ‘Paris
is the capital of France’, on the basis of some already existing associative links. We sup-
pose here that these links are fixed, that they correspond to associations already learned,
but, of course, for more general problenhe tlinks have to be considered dynamically.

For a detailed proof, for example, that grammars can be learned just from associations or
conditioning connections, see Supps).

Our approach is similar to earlier work on semantic netwt$. The most important
difference is the detailed consideration of the dynamics of the computation of truth, starting
with the dependence on an explicit external cause of activation, i.e., an auditory or visual
verbal stimulus being presented to a person. And this activation is followed by spreading
activation internally to other nodes not directly activated by the stimulus, as explained in
more detall later.

3. Thetheory
3.1. Intuitive concepts and conventions

A large number of intuitively simple concepts are introduced in the statement of the ax-
ioms. We have not introduced a formal mattegical notation for these concepts, because
we feel the meaning of the axioms will be much easier to understand if ordinary language
is used.

We consider an associative network of nodes and links between the nodes. Of course,
not all nodes are linked. A severe restriction of what we analyze in detail is that no learning
or forgetting is considered, only performance after associations have been learned. We en-
visage the networks functioning in the following natural environment. Someone is asked a
guestion, or asked to say whether a sentetait familiar phenomenais true or false—in
fact, it is the latter alternative we considexplicitly, although the extension to questions
is pretty obvious. So input or stimulation from outside the network, and the brain in which
we implicitly assume it is located, comes in the form of sentences expressed orally or pre-
sented visually. As in ordinary conversation, everything relevant about the language used,
English in our case, is assumed known. There is here no attempt whatsoever to begin from
the beginning with the first learning of a first language. We are trying to formalize, at least
partially, the processing of simple sentences that are empirically true or false. What we
are doing in a general way is making expliaidetailed psychological model of how this
processing is done. The model is much simplified to provide an overview of how compu-
tations of truth and falsity can be made in such a model that has its origins in ideas that
go back to Hume's theory of association, and that have been much studied in psychology
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in the last 100 years. What is important is that the fundamental ideas come from empirical
scientific efforts rather than logical or philosophical ones.

So let us now turn to the concepts and conventions we use. The first to mention is that
of a brain image Reference is continually made to the brain images of words without
further explanation. For some detailed attempt to be much more specific about this, see
Suppeg16-18] In this earlier work, brain images of words are taken to be finite temporal
segments of superpositions of sine waves of varying frequency, amplitude, and phase, with
the frequencies being very much smallerrtlibat of ordinary speech, somewhere in the
range from 1 to 30 Hertz. But such details, or even the correctness of this work, are not
required here. We need only assume that our brains do have a way of representing words.
Our language of images and associations makes no commitment to any particular method
of representation.

Itis not a new idea that associations stibloé thought of ultimately as in the brain, not
simply in the mind. Here is what William James had to say about this point.

...And so far as association stands faraase it is betweerprocesses in the braiit
is these which, by being associated in cerigays, determine what successive objects
shall be thoughfl1, p. 554]

Moreover, it is a well-defined problem of ment research to conceptualize and test
models derived from the physics of electromagnetic fields, and possibly the dynamics of
other physical processes, to give an adequate physical grounding to the brain process of as-
sociation. One other point. Some talk about association seems to claim that the associations
we have are between things out in the world. But this view in its pure form cannot give a
scientific account of our thinking processes. We go from physical things and processes to
their representations (or images) in the brain. The physical associations must be physical
phenomenain our brains, at least for those of us who do not hold to some outlandish dogma
of dualism.

As already remarked, the brain images of words are permitted only two states here:
quiescenbr active And we emphasize quiescent is not meant to suggest zero energy, but
something very small but positive. (Note to logicians: we are serious about the energy
remarks, for the ultimate theory of the plnena we are developing is physical; indeed
we would argue that at the most fundamental level the processing of language, on the
occurrence of a linguistic stimulus, is primarily in the electromagnetic field generated by
the relevant population of neurons, but this rather controversial thesis will also not be
defended here. It is only introduced to give some orientation of where the ideas used are
coming from.) We also emphasize again howde the assumption of only two states is;
much evidence supports the contrary.

The nextidea is that wactivatequiescent states to produce activated states. The energy
for this activation comes, at least partially, from the verbal stimulus input. The speed of
this activation is important in detailed studies of such semantic phenomena as listening
with clear comprehension to a fast talker, or reading quickly texts of many different kinds.
We listen and read quickly enough to keep up a fast pace. Any model of activation, and,
therefore, of memory retrieval of the words heard or read, must satisfy such speed con-
straints. However, we have nothing to say here about the necessary process of identifying
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whether an incoming stimulus is verbal in nature, and, if it is, what word is it, and how fast
can it be retrieved from long-term memory.

The links between nodes, i.e., the links between the brain images of words, are just
Hume'’s and later psychologya&ssociationsAll we assume here is that associations are
something physical of a definite kind—we resist stating our own favored hypothesis about
what this “definite kind” is. Links, like brain images of words, also can have just the same
two states, quiescent or active.

In the three simple explicit examples of truth computation we give at the end, we intro-
duce only a few words, which, besides the function wasd®f andthe,and the logical
constannot, are just names of two cities and two countries along with the capital. Of
course, the brain image of the wdedris, for example, has many associated brain images
of properties, features or relations of the city of Paris, but we do not introduce them here,
for they are not activated, and thus not needed, in our examples. But we stress they surely
occur in bewildering varietyand any serious empirical model would need to try to survey
the most significant ones. Here, we introduce only one property in our examples, the 1-1
propertyof the relation of being a capital in the ordinary political sense, expressed by our
use of the wordtapital. The association is between the brain image of the word and the
brain image of the property.

Our notation for associations, introduced later, suggests the relation is symmetric, but
this seems contrary to experience. For example, in talking about, say, Korean democracy,
we associate to the practices of democracy in the United States or the European Union, not
vice versa. On the other hand, experience, and also psychological experiments, show that
running the relation in reverse, so to speak, against the dominant direction of association,
can also occur in a quite natural way. The distinction we want to have is one of relative
intensity, not absolute presence or absencés ifiportant conceptual distinction, needed
for detailed empirical work, we ignore here. We simply avoid, in the axioms stated later,
any commitment about symmetry.

A concept essential here, but really never seen as far as we know, in any system of for-
mal logic, is that ofspreading activationa concept that applies to the activation of brain
images of words not activated directly by the word actually occurring as a stimulus. Ax-
ioms S1, S2 and S3 formulate the qualitative properties we need for our limited purposes.
For good examples of the use of this conceptin psychological theories and models of mem-
ory retrieval and related phenomena, some good references from the not too distant past
are[1-7,9]

Logicians used to carefully formalized amepts, shed of all intuitive meaning, will find
especially deviant our use of the conceptfamiliar properties But here the usage is
innocent, referring only to some simplified results assumed either in the initial state or
implicitly understood as part of prior experigs Making it explicit for general purposes is
something not possible in any practical sense, and a mistaken way to talk about experience
in detail. How to deal with familiarity in more complicated contexts we leave to some
other occasion, but Bayesian ideas would be at least of some formal use, even if not very
substantive. A prime instance of being familiar is the example of the 1-1 property of the
binary relation of being a capital, mentioned earlier.

Finally, we come to a non-familiar concept thzas, all the same, a simple intuitive
explanation. We need to be able to refer to #ssociative coref a sentences, in our
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notation,c(S). When we are faced with rapidly doirggmost any kind of task, our brains

strip it down to essentials and focus but little on the parts that do not matter. In the brain
experiments referred to earlier (Suppes et al.), we presented persons simple auditory or
visual geography sentences about every four seconds and asked them to judge each as true
or false. Given this kind of task—and there are many like it in repetitious tasks of ordi-
nary life—persons quickly learn to consider only the key reference words which vary in
an otherwise fixed sentential context, or occur in a small number of such contexts. So,
for example, the associative core of the sentelRags is the capital of Frances the

string of brain images of the three worsaris, capitaland France,for which we use

the notation PARIS/CAPITAL/FRANCE. Tk last example takes us to our few special
conventions of notation. We use capital letters to denote the brain images of words, e.g.,
PARIS is the brain image d?aris. We use as variablaes; for words and the correspond-

ing capital letterg¥; for brain images. The notation for the quiescent state of links,is

as in PARIS~ FRANCE, and the active state 48, as in ROME~ ITALY. For simplic-

ity we do not use notation that differentiates the quiescent or active state of brain images
serving as nodes in our associative netvgotk more elaborate work this would be neces-
sary.

3.2. Statement of axioms

3.2.1. Axioms for the initial state
Axiom 11. No brain images of words are activated; all those present are in the quiescent
state.

Axiom 12. All the links between brain images of words are quiescent.

Axiom I3. There are no links between brain images of alethic wordsd', * false) and
proper words.

Axiom |4. There are quiescent links between the brain image$atée and ‘not, and
betweentrue’ and ‘not.

3.2.2. Axioms for activation

Axiom A1l. Given an input sentenc®(ws, ..., w,), the probability of the brain image of
awordw; (1<i <n)ofSinaquiescent state being activated is equal to or greater than
1—e.

Axiom A2. Given an input sentencgws, .. ., wy), the events of the brain images of words
w; being activated are probabilistically independent of each other.

Axiom A3. If the brain images of two words are a@tted and there is a quiescent link
between them, then this link becomes activated.
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3.2.3. Axioms for true
Axiom T1. If the associative core(S) of a sentencd is activated, then a link is activated
between the brain images dfue and c(S), and the brain image ofrue’ is activated.

3.2.4. Axioms for false
Axiom FL1. If the brain images oftfrue’ and ‘not are activated, then the brain image of
‘falsé€ is activated.

Axiom F2. Ifthere is an activated linkdtween the brain image dftie’ and the associative
corec(S) of a sentencd, and the brain image ohot is activated, then a link is activated
between the brain image dhlse and the core:(notS) of the sentencaots.

3.2.5. Axioms for spreading activation
Axiom S1. If W is activated, then the most familiar properties associated Witlre also
activated.

Axiom S2. If Wy ~ W» or W» ~ W3, andW; ~ W3, then the associative coié, Wo W3 is
activated.

Axiom S3. If the associative cor#/; W, W3 is activated W; or Wy is activatedW; # W1
and Wj # W3, and W ~ 1-1, then the brain image ofalsée is activated and the link is
activated between the brain image fzfi5€ and the activated associative cdig W W3 or
W1W2Wj3, as the case may be.

3.3. Examples

For all our examples we have the same initial state of the network, with all the links
quiescent, e.g., PARIS CAPITAL, and after activation we use the notation PARIS
CAPITAL. In the examples themselves we show only the activated links. And, in our no-
tation, as remarked earlier, we do not distinguish between the quiescent and activated state
of brain images. So in the first time poirit of the first example, PARIS, it is assumed it is
activated in accordance wilxiom Al.

Initial State

PARIS~ CAPITAL, ROME~ CAPITAL
FRANCE~ CAPITAL, ITALY ~ CAPITAL
PARIS~ FRANCE, ROME~ ITALY
CAPITAL ~1-1

TRUE~ NOT, FALSE~ NOT
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Example 1. Paris is the capital of France.

t1. PARIS Ax Al
t2. CAPITAL, CAPITAL~1-1 Ax Al, S1
t3. FRANCE PARIS~ CAPITAL Ax Al, A3
t4. CAPITAL ~ FRANCE PARIS~ FRANCE AxA3
t5. PARIS/CAPITAL /FRANCE Ax S2
16. TRUE~ PARIS/CAPITAL /FRANCE AxT1

Example 2. Paris is not the capital of France.

t1. PARIS Ax Al
t2.NOT, CAPITAL, CAPITAL~1-1 Ax Al, S1
t3. FRANCE, PARIS~ CAPITAL Ax Al, A3
t4. CAPITAL ~ FRANCE, PARIS~ FRANCE Ax A3
5. PARIS/CAPITAL /FRANCE Ax S2
16. TRUE~ PARIS/CAPITAL /FRANCE AxT1
t7. FALSE Ax F1

t8. FALSE~ PARIS/NOT/CAPITAL/FRANCE AxF2

Example 3. Rome is the capital of France.

t1. ROME Ax Al
t1. CAPITAL, CAPITAL~1-1 Ax Al, S1
t3. FRANCE ROME= CAPITAL Ax Al, A3
t4. CAPITAL ~ FRANCE Ax A3
t5. PARIS/CAPITAL /FRANCE Ax S2

ROME/CAPITAL /ITALY

t6. TRUE~ PARIS/CAPITAL/FRANCE  AxT1
TRUE~ ROME/CAPITAL/ITALY

t7. FALSE~ ROME/CAPITAL/FRANCE Ax S3

4. Some philosophical consequences of the theory

From our point of view, for a normal adult speaker of English there are no basic differ-
ences between the truth of “8529 = 44" and “Paris is the capital of France”: both are
the result of performance computations oreatly learned associative networks. It seems
therefore difficult to say that the truth of “H529= 44" is analytic or a priori in opposition
to the truth of “Paris is the capital of France” being synthetic or a posteriori.

We can, however, draw some distinctions between the computation of truth of different
sentences. An important difference about the computation of different sentences is the time
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necessary to perform the computation. But can we say that the truth of sentences whose
truth computation requires less time is analytic or a priori rather than synthetic or a fortiori?
Then what is the time constant which will mark the difference? From this point of view a
negative or false sentence would often be less analytic than a true sentence.

It is better to focus on the level of activation necessary to compute the truth of a sen-
tence. If no brain images of proper words other than those of the words of the sentence
were necessary to compute the truth of it, then we could say that the truth or falsity of the
sentence is analytic, and that the truth or falsity would be synthetic if it required the acti-
vation of other words not in the sentence. But it is not the purpose of this article to defend
in any detail this reformulation.

We could distinguish the pair analytic/synthetic from the pair a priori/a posteriori by
saying that the truth of a sentence would be a priori if its computation did not require
something else outside of the network. Using this terminology, we could say that in our
examples we have considered only a priori truth. In contrast, a posteriori truth depends on
the use of external perceptions, such as looking up some fact in an atlas. This empirical
construct of the analytic and a priori walfit into a philosophical tradition that goes back
at least to John Stuart Mill.

In our context of ordinary usage, we do not see analytical truths as tautological truths
or trivial identities of the type ‘The capital of France is the capital of France’. In fact, if
we ask the question ‘Is the capital of France the capital of France?’ to an ordinary man,
he may have some difficulty in understanding what we are asking, and he takes more time
to give a positive answer to this question than to a question like ‘Is Paris the capital of
France?’, because the trividentity question sounds like nonsense. Much the same can be
said about less tautological questions sashls the capital of France in France?'.
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