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Abstract

Many-valued logics are standardly defined by logical matrices. They
are truth-functional. In this paper non truth-functional many-valued se-
mantics are presented, in a philosophical and mathematical perspective.
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Introduction

The aim of this paper is to present a new tool for the study of logics, the
concept of non truth-functional many-valued semantics. 1

We begin, in a first part, by a general discussion about many-valued logic 2

in order to show what is exactly the philosophical and mathematical meaning
of this concept, in which position it stands in the logical space.

In a second part we recall the definition of logical matrix and the standard
definition of many-valued logic based on this notion. It is important to have
these definitions here in order to properly understand the distinction between
truth-functional and non truth-functional many-valued semantics, and these
definitions are also worthy to fix the terminology which can be misleading and
ambiguous.

Notions discussed informally in the first part are given a precise meaning
here and in the third part where we properly define the notion of non truth-
functional many-valued semantics and give some examples of such semantics.

1 Logical matrices = many-valued logic?

1.1 Logical matrices do not reduce to many-valued logic

Many-valued logics are ones of the most famous non-classical logics. They ap-
peared independently in the work of different people at the end of the XIXth
/ beginning of the XXth century, mainly C.S.Peirce, E.Post and J. Lukasiewicz.
The work of  Lukasiewicz was without doubt the most influential in the devel-
opment of many-valued logics. One of the reasons is that  Lukasiewicz’s work
promoted the concept of logical matrix, central concept for the construction of
many-valued logics, implicit in the works of Peirce and Post. The concept of log-
ical matrix was later on systematically used for the development of many-valued
logic.

Moreover the notion of logical matrix has been used not only to generate
many-valued logics. For example Bernays [2] used many-valued matrices at
the metalogical level to prove the independence of sets of axioms for classical
propositional logic. It has also been used at the metamathematical level by
people like Kleene [23], Bochvar [13] or Girard [20]. It was the idea of Tarski
that the concept of logical matrix could be used as a basic tool for the general
theory of zero-order logics.3 And in fact this concept really became fundamental

1Non truth-functional many-valued semantics were introduced for the first time some years
ago in one of my papers about non classical logics [3]. But in this paper they just appear as
a side notion.

In some sense the present paper is a sequel of two other papers ([6], [18]), although it is self-
contained. The paper [18] arose from a discussion about G.Malinowski’s book on many-valued
logics [25]. This little book is a good presentation of standard many-valued logic.

2We will alternatively use the singular “many-valued logic” or the plural “many-valued
logics”, depending on what we want to emphasize. The singular expression emphasizes many-
valued logics as a whole.

3In a footnote to the reedition of “Investigations into the sentential calculus” by  Lukasiewicz
and Tarski in Tarski’s volume Logic, semantics, metamathematics, Tarski recalls that “the
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in the so-called “Polish logic”.4
So logical matrices do not reduce to many-valued logic. But what about

the converse: does many-valued logic reduce to logical matrices? To generate
many-valued logics do we need logical matrices?

1.2 Logical matrices do not violate the principle of biva-
lence

What is the definition of many-valued logic? One can define a many-valued logic
as a logic which violates the principle of bivalence. But what it the principle of
bivalence? It can be stated as follows:

Principle of Bivalence A proposition is true or false: it cannot be true
and false, or neither true nor false.

The interpretation of this principle is not necessarily obvious.5 One can for
example seriously doubt that the standard many-valued logics challenge this
principle. The reason is the following: the principle of bivalence is present in
many-valued matrices through the distinction between designated and undes-
ignated values, as stressed by G.Malinowski: “The matrix method inspired by
truth-tables embodies a distinct shadow of two-valuedness in the division of
the matrix universe into two subsets of designated and undesignated elements.”
([25], (p.72)). This very distinction is crucial for the definitions of logical truth
and logical consequence.

When we have, for example, a many-valued matrix, with three values 0,
1/2, and 1, it is therefore misleading to call the value 0 true, the value 1 false
and the value 1/2, indeterminate, or true-false, etc. The designated values
must be considered as corresponding to truth, and the undesignated values
as corresponding to falsity, because logical truth is defined as “designated for
every valuation”. The same many-valued matrix can generate totally different
logics according to the choice of designated/undesignated values. For example
 Lukasiewicz took only 1 as designated, but in the constructions of paraconsistent
logics people have taken 1/2 and 1 as designated (see [1], [19], [29], [30], [36],
[27]). To consider 1/2 as designated but not calling it true can lead to erroneous
interpretations of the logic generated by the matrix (see [12]).

construction of many-valued systems of logic described here, are entirely due to  Lukasiewicz
and should not be referred to  Lukasiewicz and Tarski.” ([34], p.38) But later on when the
concept of matrix is introduced, he adds the following footnote: “The view of matrix formation
as a general method of constructing systems is due to Tarski” ([34], p.40).

4About the general theory of zero-order logics, Polish logic and this terminology see [10].
5Very often the principle of bivalence is confused with the principle of excluded middle and

sometimes with the principle of contradiction. This confusion has been discussed in [18] and
[11] and will not be treated here. We have tried here to give a formulation of this principle
which avoids confusions.
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1.3 Suszko’s distinction between algebraic values and log-
ical values

The concept of logical consequence seems essentially bivalent (and also the con-
cept of logical truth which is a particular case of it). If one has a consequence
relation ` it can be interpreted semantically: T ` a means every model of T is
a model of a, and T 6` a means there is a model of T which is not a model of
a. So to be a model or not to be a model, that is the question. No matter how
“truth in a model” is defined (using several designated values, interpretations,
accessibility relations, etc.), what is important is that at the end we have the
dichotomy true in a model / false in a model.

In fact if we have a consequence relation, it is always possible to find a
bivalent semantics for it, just by taking as models, characteristic functions of
some theories. As Suszko puts it: “In short, every logic is (logically) two-valued”
([33], p.378). Suszko indeed provided a bivalent semantics for  Lukasiewicz’s
three many-valued logic L3 (see [32]). This may sound paradoxical since L3 is
called a three many-valued logic because it cannot be defined with a two-valued
matrix. But Suszko’s semantics is not a matricial semantics. The values 0 and 1
in this semantics are not the domain of an algebra, they are not algebraic values
but logical values, following Suszko’s terminology.

In the case of propositional classical logic, algebraic values and logical val-
ues coincide in some sense because the characteristic functions of the maximal
theories can be viewed at the same time as homomorphisms from the set of
formulas into the Boolean algebra on {0, 1}. But in most cases this does not
happen. So one must make clear the distinction between logical values and al-
gebraic values. In the case of L3, we have two semantics, one with two logical
values and a semantics with three algebraic values. But there are logics which
cannot be characterized by (finite) matrices and therefore have no semantics
with algebraic values. This is the case for example of the paraconsistent logic
C1 of da Costa (cf. [14], [4]). For this logic, a semantics with two logical values
was provided [15]. Later on da Costa and his pupils developed a general theory
of logic based on such kind of semantics under the name “theory of valuation”
(cf. [16], [17]).

For Suszko, “any multiplication of logical values is a mad idea and, in fact,
 Lukasiewicz did not actualize it” ([33], p.378). But what is exactly a logical
value? Does the dichotomy algebraic value / logical value admit no third pos-
sibility? The aim of this paper is to present many-valued semantics where the
values are not algebraic values in Suszko’s sense, they are not elements of the
algebra of a logical matrix. But we will not be mad enough to call these values
logical values since, because as in the matrix case, we will make a distinction
between designated and undesignated values, in order to define logical truth and
logical consequence.

One can wonder why introducing such kind of many-valued semantics, since
every logic is two-valued.  Lukasiewicz’s logic L3 has a bivalent semantics, so
why multiplying the values and introducing a three-valued semantics? The
reason is that this three-valued semantics gives a totally different look at L3
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and is a very useful technical tool to prove theorems of L3 and metatheorems
about L3.6 Non truth-functional (i.e. non matricial) many-valued semantics
were introduced (cf. [3]) for the study of the paraconsistent logic C1 which
doesn’t have truth-functional semantics. As we have already said, this logic
has a bivalent semantics. But the use of a many-valued semantics can give a
better intuition of C1 and simplifies the proof, in the same way as the three-
valued matricial semantics does for L3, even if this many-valued semantics is
not truth-functional.

Non truth-functional many-valued semantics are a useful tool for the study
of logics. As in the case of matricial semantics, the additional values are philo-
sophically ambiguous, and in some sense they preserve the principle of bivalence
through the dichotomy designated/undesignated values. But as in the case of
matrix semantics it is also possible to use these non truth-functional semantics
to generate logics which are many-valued in a deeper sense.7

2 The standard definition of many-valued logic

2.1 Logical matrices

A logical matrix M is a structure 〈A; D〉 where A is an abstract algebra 〈A; fun〉
and D is a subset of the domain of the algebra A.

fun is a finite sequence of finitary functions (i.e. functions of finite arity)
defined on A, called truth-functions. The type of the algebra is the specification
of the length of this sequence and the arity of each truth-function. Elements
of A are called values, an element of A is called a designated value if it is also
a member of D, undesignated value otherwise. Given a cardinal κ, a κ-valued
matrix is a matrix where the domain of values is of cardinality κ.

A typical example of logical matrix is the 2-valued matrix of classical propo-
sitional logic: 〈〈{0, 1}; ¬, ∨, ∧, →〉; {1}〉〉. It is important to note that here, the
sign “→”, for example, represents a truth-function and not a connective. Gener-
ally people use the same name, as we did, for truth-function and for connectives.
This is a useful device but it can be sometimes misleading (see [10]). This 2-
valued matrix is many-valued in the sense that “2 is many”. But according
to the standard convention a many-valued matrix is a matrix of cardinality
superior or equal to three.

6And vice-versa. The non truth-functional bivalent semantics for L3 was introduced by
Suszko rather as an “exercise de style”, and it didn’t seem to have further utility. However
this semantics was used later on to provided a sequent-calculus for L3 (see [9]) using the close
connection between bivalent semantics and sequent calculus.

7G.Malinowski has used many-valued matrices to define consequence relations which are
different than the usual one, which are in some sense more many-valued (see [26]). It is
possible to use non truth-functional many-valued semantics in a similar way.
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2.2 Logics

There are many ways to define what is a logical structure, we consider here three
basic types of logical structures: L1= 〈F ; `1〉, L2= 〈F ; `2〉, L3= 〈F ; `3〉.

For all these structures, F is an absolutely free algebra of type 〈F; con〉. An
element a of the domain F is called a formula. con is a sequence of functions
called connectives which generate F from a subset P of F. An element p of P is
called an atomic formula. A set of formulas T is called a theory.

• `1 is a subset of F, elements of `1 are called tautologies.

• `2 is a binary relation between theories and formulas. It is called a con-
sequence relation.

• `3 is a binary relation between theories and theories. It is called a multiple-
consequence relation.

Hereafter we will use the word logic as a generic term for these three kinds
of structure.

2.3 Many-valued logics generated by logical matrices

Logical matrices are used to generate logics. With a logical matrix, one can
generate a logic of type 1, 2 or 3 by a uniform method.

Given a matrix M = 〈A; D〉, we consider the absolutely free algebra F of
the same type as A and the set HOM of homomorphisms between F and A.

An element of HOM will be called a morpho-valuation. A function from the
set P of generators of F to the domain A of the algebra A is called an atomic
morpho-valuation. Due to the fundamental property of absolutely free alge-
bras, any atomic morpho-valuation has a unique extension which is a morpho-
valuation. Thus, it is the same to consider morpho-valuations or atomic morpho-
valuations, since there is a one-to-one correspondence between them.

Using the notion of morpho-valuations, we now define sets and relations on
the domain of F , which lead to the three basic types of logical structure.

For any formula a and theories T , U :

• `1 a iff for every morpho-valuation µ, µ(a) is a designated value.

• T `2 a iff for every morpho-valuation µ, if µ(b) is a designated value for
every element b of T , then µ(a) is a designated value.

• T `3 U iff for every morpho-valuation µ, if µ(b) is a designated value for
every element b of T , then there is an element c of U , such that µ(c) is a
designated value.

Given a logic L, one says that a matrix M characterized L, or that M is a
characteristic matrix for L, iff L is the logic generated by M.
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According to the standard definition of many-valued logic, a logic is not a
κ-valued logic if it is, or can be, generated by a κ-valued matrix. If this would
be the definition, classical propositional logic would be a 242-valued logic since
in fact it is not difficult to see that it can be generated by matrices of any
cardinality superior to one.

A logic L is said to be κ-valued iff κ is the smallest cardinal such that
there exists a κ-valued matrix which characterizes L. A typical example of
many-valued logic is  Lukasiewicz’s three-valued logic, which is generated by a
three-valued, and cannot be characterized by a two-valued matrix. Concerning
the cardinality of “many”, the same convention applies here as in the case of
matrices: the two-valued classical logic is not called a many-valued logic, a
many-valued logic is a logic which is at least 3-valued.

3 Non truth-functional many-valuedness

3.1 Truth-functional logics

What is a truth-functional logic? Classical propositional logic is truth-functional,
but what about intuitionistic logic? The various modal logics? etc.

One could just say that a truth-functional logic is a logic that can be char-
acterized by a logical matrix. However this definition seems too weak, since
following it, quite every logic would be truth-functional: according to a famous
theorem, whose original idea is due to Lindenbaum, any logic of type 1 which
is structural, i.e. close under substitutions, can be characterized by a matrix.
And this theorem can be generalized in some sense to logic of types 2 and 3 (see
[37]).

A reasonable definition runs as follows: a truth-functional logic is a logic
that can be characterized by a finite matrix. In this sense, intuitionistic, stan-
dard modal logics (S5, S4, K, etc..), the paraconsistent logic C1, Jaśkowski’s
discussive logic and many other logics are not truth-functional.8

3.2 Non truth-functional semantics

Following our definition of truth-functional logic, we can say that a truth-
functional semantics is a finite matrix. According to this definition a non
truth-functional semantics is any semantics which is not a finite matrix. This
definition is quite vague if we don’t specify what is a semantics.

We can give a very general definition of a semantics for a logic: a semantics
is a structure 〈R; mod〉 where R is a set of objects called representations, and
mod a function from the set of formulas to the power set of R, which associates
to each formula a the set mod(a) of representations in which a is true.

8One can generate logics with logical matrices in different other ways than the one explained
in the preceding section. For example, Gödel has shown that intuitionistic logic cannot be
characterized by a finite matrix [21], but Jaśkowski has shown that it can be defined by a set
of finite matrices [22].
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For example in the case of L3, representations are homomorphisms from F
to the algebra of the matrix and the function mod is defined by: µ ∈ mod(a) iff
µ(a) is designated. In the case of modal logics, representations are frames, and
the function mod is defined by: µ ∈ mod(a) iff a is true in every possible worlds
of the frame µ. 9

Let us now consider a very simple example of non truth-functional semantics,
a bivalent one. We consider an algebra of formulas F built only with two
connectives, ¬ and →, and we define a set of functions B from F into {0, 1} as
follows: β ∈ B iff

• β(a → b) = 0 iff β(a) = 1 and β(b) = 0

• if β(a) = 1 then β(¬a) = 0.

The connective ¬ is defined by just “half” of the condition for classical negation.
The logic generated by this semantics (taking 1 as designated) is called K/2
and has been studied in [8]. In this paper it has been shown in particular that
classical logic is translatable in K/2. This logic is paracomplete in the sense
that a formula and its negation can both be false. If we introduce a disjunction
in a natural way, the formula ¬(a ∨ ¬a) is not a tautology.

The set of bivaluations B is not a set of homomorphisms and in particular
cannot be generated from atomic bivaluations, i.e. functions from P to {0, 1}.
The behavior of bivaluations for negation can be illustrated by the following
table: 10

p ¬p ¬¬p ¬¬¬p
0 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0
0 1 0 1
1 0 0 0
1 0 0 1
1 0 1 0

TABLE 1

We can interpret this non truth-functional semantics saying that the value
of ¬a is “not determined” by the value of a: if the value of a formula a is 1, the
value of ¬a must be 0, but if its value is 0, the value of ¬a can be 0 or 1.

9More about this general definition of semantics can be found in [5], [7].
10It would be misleading to call such a table, a “truth-table”, the similarity is rather visual

than conceptual, since this table does not describe a truth-function. Anyway this kind of table
can be used as a decidability method. When we say that this table is an “illustration”, this
means precisely this: given any bivaluation of B, its restriction to the set of formulas which
appear in the first line of the table, coincide with one of the other lines of the table; and any
of these lines can be extended to a bivaluation of B. This kind of tables were presented for
the first-time in [15].
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However in this semantics, the behavior of the implication is deterministic
in the sense that if we know the values of the two direct subformulas of a
conditional, we know the value of this conditional. The behavior of bivaluations
for implication can be described by the following usual table:

p q p → q
0 0 1
0 1 1
1 0 0
1 1 1

TABLE 2

3.3 Examples of non-truth functional many-valued seman-
tics

We will explain what is a non truth-functional many-valued semantics, gener-
alizing the preceding example of non truth-functional bivalent semantics, to a
three-valued non truth-functional semantics. In a three-valued truth-functional
semantics, the value of the negation of a formula is determined by the value of
this formula. For example in the case of the three-valued matrix of  Lukasiewicz,
if the value of a formula is 1/2, the value of its negation is 1/2. Now in a three-
valued non truth-functional semantics, given a value for a formula, the value of
its negation is not determined.

Let us consider a three-valued non truth-functional semantics with three val-
ues {%, 0, 1}, where only 1 is considered as designated, defined by the following
conditions: τ ∈ T iff

• τ(a → b) is undesignated iff τ(a) = 1 and τ(b) is undesignated

• τ(a) = 0 iff τ(¬a) = 1.

The behavior of threevaluations for negation can be described as follows:

p ¬p ¬¬p
% % %
% % 0
% 0 1
0 1 %
0 1 0
1 % %
1 % 0
1 0 1

TABLE 3
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The logic defined by this three-valued non truth-functional semantics is in
fact the same as K/2. This can be explained as follows: in the case of the biva-
lent non truth-functional semantics, given p and ¬p, there are three possibilities
than can be described by the following table:

p ¬p
0 0
0 1
1 0

TABLE 4

Now in the three-valued non truth-functional semantics, these three possi-
bilities are described by the three-values, as illustrated by the following table:

p
%
0
1

TABLE 5

The reader can check that the TABLE 3 is a reduction, in this spirit, of TA-
BLE 1. This kind of reduction can be systematized by the following definition:
given a bivaluation β of the bivalent non truth-functional semantics for K/2 we
define a threevaluation τβ as follows:

τβ(a) = % iff β(a) = 0 and β(¬a) = 0
τβ(a) = 0 iff β(a) = 0 and β(¬a) = 1
τβ(a) = 1 iff β(a) = 1 and β(¬a) = 0
It is easy to see that with this method we get a one-to-one correspondence

between B and T such that: β(a) is designated iff τβ(a) is designated. This
proves that the logic generated by B and T are the same, namely K/2.

We can say that in the three-valued non truth-functional semantics for K/2,
some information about the value of ¬p is already given by the value of p.
However this does not mean that the value of ¬p is “determined” by the value of
p. Therefore one may have some doubts about the usefulness of this semantics.
The number of values has been increased and we still have indetermination,
moreover the implication which was truth-functional is now getting non truth-
functional, since the TABLE 2 must be replaced by the following one:
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p q p → q
% % 1
% 0 1
% 1 1
0 % 1
0 0 1
0 1 1
1 % %
1 % 0
1 0 %
1 0 0
1 1 1

TABLE 6

When the value of p is 1 and the value of q is undesignated, % or 0, then
the value of p → q is not determined because it can be % or 0.

Let us see now a more convincing example of non truth-functional many-
valued semantics. Imagine that we modify the definition of B adding the fol-
lowing condition:

• if β(a) = 1 and β(b) = 0 and β(b) 6= β(¬b) then β(¬(a → b)) = 1

This condition can be described by the following table:

p q ¬q p → q ¬(p → q)
0 0 0 1 0
0 0 1 1 0
0 1 0 1 0
1 0 0 0 0
1 0 0 0 1
1 0 1 0 1
1 1 0 1 0

TABLE 7

In this table, we need to introduce not only direct subformulas but also
negations of direct subformulas of the conditional.

Now we can “translate” this semantics in a three-valued non-truth functional
semantics, adding to the two conditions which define T, the “translation” of the
above condition:

• if τ(a) = 1 and τ(b) = 0 then τ(a → b) = 0

which can be described by the following table:
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p q p → q ¬(p → q)
% % 1 0
% 0 1 0
% 1 1 0
0 % 1 0
0 0 1 0
0 1 1 0
1 % % %
1 % 0 1
1 0 0 1
1 1 0 1

TABLE 8

The subformula ¬q does not appear neither in the above condition nor in the
corresponding table. The three-valued non truth-functional semantics has the
subformula property but not the bivalent non truth-functional semantics. That
is basically what we have gained.

4 Conclusion

If this paper we have presented the concept of many-valued non-truth functional
semantics, in particular comparing it to many-valued truth-functional semantics
and bivalent non-truth functional semantics. We have tried to show the useful-
ness of this concept through an example of a three-valued non-truth functional
semantics. But of course there are other examples. One can develop four-valued
non-truth functional semantics, etc.

These non truth-functional many-valued semantics basically keep a bivalence
feature through the distinction between designated and undesignated values, but
this is also the case of the matricial truth-functional many-valued semantics, so
it cannot be considered as an argument against them, unless it is also considered
as an argument against standard many-valued logics.

From the point of view of truth-functional many-valuedness, a many-valued
logic is a logic that cannot be characterized by a two-valued matrix. If we
want to generalize this definition to non truth-functional many-valuedness, we
face a problem since any logic can be characterized by a two-valued non truth-
functional semantics.

Anyway it seems that the standard concept of many-valued logic is quite
confuse. In fact if we do not limit the matricial definition of many-valued logic
to logics that can be characterized by finite matrices, any logic is many-valued
(due to Lindenbaum’s theorem), except classical logic, which is not by con-
vention, considering that 2 is not enough to be “many”. It seems to us that
the standard concept of many-valued logic should be withdrawn: logics which
can be characterized by finite matrices should simply be called truth-functional,
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with the addition of the smallest cardinality for which they can be characterized
by a matrix.

On the other hand the expression “many-valued semantics” should be kept
but its meaning should be extended in order to include not only finite or infinite
matrices, but also non truth-functional many-valued semantics.

These many-valued semantics are useful tools for the study of logics defined
as sets of tautologies or consequence relations, but can also be used in a more
radical way to generate logics which challenge the principle of bivalence in a
deeper sense, and which truly deserve the name “many-valued logics”.
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République Socialiste de Roumanie, Bucarest.

[29] G.Priest, 1979, “Logic of paradox”, Journal of Philosophical Logic, 8, 219-
241.

[30] L.Puga and N.C.A. da Costa, 1988, “On the imaginary logic of
N.A.Vasiliev”, Zeitschrift für mathematische Logik und Grundlagen der
Mathematik , 34, 205-211.

[31] A.M.Sette, 1973, “On the propositional calculus P1”, Mathematica
Japonae, 16, 173-180.

[32] R.Suszko, 1975, “Remarks on  Lukasiewicz’s three-valued logic”, Bulletin of
the Section of logic, 4, pp.87-90.

[33] R.Suszko, 1977, “The Fregean axiom and Polish mathematical logic in the
1920s”, Studia Logica, 36, 377-380.

[34] A.Tarski, 1983. Logic, semantics, metamathematics , second edition, Hack-
ett, Indianapolis.

[35] M.Tsuji, 1998, “Many-valued logics and Suszko’s Thesis revisited”, Studia
Logica, 60, 299-309.

[36] R.Tuziak, 1997, “Finitely many-valued paraconsistent systems”, Logic and
Logical Philosophy , 5, 121-127.
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