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1 Introduction

During the last two decades, we have been witnessing a growing interest as well as a
remarkable activity in connection to paraconsistent logic. So many specialized publi-
cations appearing, international congresses being held, and research papers advancing
considerably the theory could not but confirm the highly favorable environment condi-
tions for this new kind of logic. More recently, however, in addition to the well-known
contributions to the issues linked to the foundations of mathematics, paraconsistent
logic has found a fruitful (and, for sure, amazing) new field of application: Computer
Science! Indeed, specially within Artificial Intelligence, in order to face theoretical
difficulties raised by inconsistent data base, paraconsistent tools have been success-
fully applied. As a result, new paraconsistent systems have been developed, opening
thus new research fields, as well as the way to potentially interesting applications.

Our aim in this rather expository paper is to present, in an outline, some of the
main features of a logic of inconsistent but non-trivial systems. There are, in fact,
infinitely many paraconsistent logics, and in what follows we shall examine mainly
one of them, a specific paraconsistent propositional logic called C;". In order to do
so, this work is divided into four sections. In the following, we shall consider, from a
historical point of view, some aspects underlying the inception of paraconsistent logic
in general, as well as of C; in particular. Thus (or so we hope) some of the motiva- .
tions in order to examine this specific paraconsistent system might be supplied. In
Section 3, a technical development will then be presented, with a particular empha-
sis on some results recently obtained regarding C;. After considering this system,
in Section 4 some straightforward, possible applications of it are to be then briefly
suggested. However, given its character as a non-classical logic, no general exposition
of paraconsistency can be minimally acceptable without some philosophical remarks
regarding its nature. Hence, in the last section, some brief comments on this issue
will be presented, as far as some aspects of Cfr are concerned, at least in order not
to leave this demand totally unsatisfied.
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2 Historical aspects

As it is well known, and solidly established at present, in order to find the main
forerunners of paraconsistent ideas, one should trace as far back as Jan Lukasiewicz’s
and Nicolaj Vasili’év’s work. Indeed, in 1910/11, quite independently of each other,
both of them have stressed the importance of a revision of some laws of Aristotelian
logic, opening up in this way the possibility of the development —in an analogy with
non-Euclidean geometry — of non-Aristotelian logics, mainly the ones in which the
principle of contradiction is somewhat restricted.

In his celebrated 1910 work, On the Principle of Contradiction in Aristotle, as
well as in a related paper from the same period, Lukasiewicz, after presenting three
different Aristotelian formulations of the principle of contradiction — an ontological,
a logical and a psychological one — and rejecting each of them, argues that such a
principle could not be so basic as one usually supposes. As a consequence, a precedent
was created for the beginning of non-classical logic; however, unable to elaborate a
particular logical system at this time, the precedent, to a certain extent, was lost.

Similarly, Vasili’év, although not having formulated himself a specific system, be-
cause of his ideas related to imaginary logic, is rightly considered as a precursor of
paraconsistent theories. On this regard, it should be noted the deep inspiration ex-
tracted from Lobatchevsky’s work on non-Euclidean geometry: more than its name
(at the time, this geometry was known as imaginary geometry), the methods of con-
struction were also strikingly similar to the ones used by Vasili’év. Furthermore,
according to Arruda (see [2]), Vasili’év believed that, just as within Lobatchevski’s
geometry, his logic could also present a classical interpretation.

But it was not earlier than 1948 that Stanislaw Jaskowski, under Lukasiewicz’s
influence, would propose the first paraconsistent propositional calculus!. So, he was
possibly the first to formulate within inconsistent theories the issues connected with
non-triviality. Indeed, one of the basic, explicit conditions to be met by his system is
that when applied to contradictory theories, it should not be the case that all their
formulas become a thesis of the system; that is, the presence of contradictions should
by no means entail the system’s trivialization.

In close connection to this point, Jaskowski’s paraconsistent theories, from Arru-
da’s viewpoint (see [3]), have roughly been developed to fulfill three basic motiva-
tions: (1) to provide a conceptual machinery to approach the problem of deductively
systematizing theories that contain contradictions, in particular the ones (2) whose
contradictions are generated by vagueness, and finally, (3) to study some empirical
theories containing contradictory postulates.

Nevertheless, however important J askowski’s work has been (being, in fact, tremen-
dously relevant), it is to one of the authors of this paper (Newton da Costa) that is
generally credited the origins of paraconsistent logic as it is known today. Since 1954,
in fact, he has formulated, in an independent way, many such systems, ranging from
the propositional to the predicate levels (with or without identity), as well as to some
caleuli of descriptions and numerous applications to set theory.

The first published work of da Costa presenting a system of paraconsistent logic

11t should be mentioned, however, as Kosta Dosen has pointed out (see {24]), that in 1928 1. E. Orlov presented
an axiomatization of the implication-negation fragment of the relevant logic R. Nevertheless, despite the fact that
such a logic is a paraconsistent one, given that Orlov seems to not to have had any intention of formalizing an
inconsistent but non-trivial system, we shall not consider him, as opposed for instance to E. Alves’ view {cf. [E5)8

as a forerunner of paraconsistent logic.
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is [13], entitled ‘Calculs propositionnels pour les systémes formels inconsistants’ (al-
though his work on the subject had begun several years before). For a long time,
da Costa used the expression ‘systémes formels inconsistants’ to refer to his systems,
until a friend of his, F. Miré Quesada, under his request, proposed in correspondence
with him and in a lecture during the Third Latin-American Symposium of Mathemat-
ical Logic (held in Campinas, in 1976) the name ‘paraconsistent logic’. Many years
later (see [16]), da Costa would describe how this name has miraculously contributed
to the development of the subject, leading eventually to the opening, in 1991, of a
new section in the Mathematical Reviews (03B53).

However, some criticisms have been addressed to this terminology; for instance, in
his review of some of the papers included in [34], F. G. Asenjo notes: ‘the expression
“paraconsistent logic” ...is largely a misnomer. The term has a misleading public-
relations timidity about it, having been introduced to avoid the arousing the negative
reflexes triggered by the word “inconsistency” * (see [6], p. 1503). This problem is
certainly not a simple one, and is related to the philosophical problematic of knowing
if paraconsistent logic is rival or complementary to classical logic. Some have clearly
brought paraconsistent logic in the direction of a complementary logic, but the other
trend is also a vivid one (cf. [34]). (See Section 5 below for a discussion.)

In his 1963 paper, da Costa, presented the paraconsistent logic C; (and a related
hierarchy of similar logics). Later, he would develop first-order calculi, description
calculi and set theories based on these calculi. But he has formulated not only these
paraconsistent logics of type C, but many others as well. He has also not worked
alone, but has founded a ‘school’ of paraconsistent logic in Bragzil. Moreover, he
has worked with the Polish logicians J. Kotas and L. Dubikatjis, and with them has
developed a systematic study of Jaskowski’s problem (see, for instance [29]). With
A. 1. Arruda and L. Z. Puga, he has worked on a modern formalization of Vasil’év’s
system (see, for example, [36]).

Da Costa has not only contributed to the birth and development of paraconsistent
logic as an autonomous field of research in mathematics by creating new systems, but
also by organizing the subject, and tracing back its “forerunners’ and making their
work better known.

The logic C; (and some connected ones) is one of the most studied and best known
paraconsistent logic. A great number of papers have been published about it, espe-
cially (but not only) in Notre Dame Journal of Formal Logic. This logic was first
presented as a system of deduction of a Hilbert-type (cf. [13]). A few years later,
A. R. Raggio, in [38], tried to formulate a Gentzen-type sequent system, but did not
succeed. It was only recently that J.-Y. Béziau gave such a version, with the corre-
sponding cut-elimination theorem (see [9]). A semantics for C; would be provided
only many years later, in [18]. The question of the algebraization of C; has also been
the subject of many investigations. Da Costa has proposed a kind of algebraization
as early as 1966 (see [14]), inspired by some ideas of H. Curry. Although some later
results have shown that O is not algebraizable, in the usual sense of the word (cf.
[33] and [30]), da Costa’s algebraic proposal can be defended in the face of Eytan’s
work (see [26]).

The idea of C; was to provide a logic which is paraconsistent, but as close as
possible to classical propositional logic. If we consider the full usual language of
propositional calculus (i.e. the connectives -, =, A, V), this means that all properties
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(independent of negation) of —, A, V must be preserved. In other words, we want a
conservative extension of the positive classical propositional calculus. On the other
hand, the negation — must be a paraconsistent negation, in the sense that there is
at least a theory T from which we can deduce a formula a and its ‘negation’ —a (T
is inconsistent), but such that there is a formula b which cannot be deduced from
T (T is non-trivial). The term paraconsistent is also used to qualify such a theory.
Furthermore, this negation should, if possible, have all the properties of classical
negation compatible with these features.

It is not easy to deal with this compromise. It is difficult indeed to analyze all the
problems related to it. Notwithstanding this, we shall present here two possibilities.
(1) A logic such as Johannson’s minimal logic fits into this definition of paraconsistent
logic, but no one wants to consider it as such; in fact, within this system, from an
inconsistent theory it is possible to deduce the negation of any formula (to avoid this
difficulty, Urbas has introduced the concept of strict paraconsistency; cf. [39]). (2) It
seems that, on this basis, some strong meta-properties will never be met; such as, for
instance, the replacement theorem.

The best to do is perhaps to study these problems in a concrete case. In C,
the negation seems to be strong enough to deserve this name; for example, it obeys
—-=a — a, a V —a, and one quarter of De Morgan’s laws (see [8]). We may intend,
however, to strengthen C; without reaching a logic such as Johannson’s, where a
contradiction relatively trivializes the system. The main drawback of C'; is that the
replacement theorem does not hold. Thus, we may intend to extend C; not only to
get more theorems, but also to get more metatheorems (such as this one). However,
this may turn out not to be possible; at least, no attempt on this direction has been
successful until now.

Nevertheless, the logic C’f“ presented here supplies a partial solution to this problem,
for in it we can define a non trivial congruence relation, which is not the case in C;
(as Mortensen has shown). On the other hand, this metatheorem is not reached by
extending artificially Cy, but by strengthening it in a very natural way, and providing
thus some interesting further theorems, specially another quarter of De Morgan’s
laws.

3 The paraconsistent logic Cj

In this section we present the paraconsistent propositional logic C;F which is a strength-
ening due to J.-Y. Béziau (presented for the first time in [8]) of the paraconsistent
logic C; of N. C. da Costa. (about C; see [13, 17, 18, 9]).

The basic idea of C; is that the weak paraconsistent negation ~ has the following
two properties: (1) a A ~ a obeys the principle of contradiction (this provides a
strong classical negation —); and (2) if @ and b obey the principle of contradiction,
sodo ~a,aAb,aVbaDb With (2), ~ is not too weak and we have, for example,
~(an~b)D(~aVh).

We extend C; to C; by replacing (2) by the following condition (2’): if a or b obey
the principle of contradiction, so do ~ a,aAb,aV b,a D b. Then ~ is stronger and
we have, for example: ~ (aV ~ b) D (~ a A D), which is false in C;.

REMARK 3.1
We have chosen here to use the symbol tilde to denote the paraconsistent negation
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and the usual symbol (in present day) - to denote the classical negation definable
in C{" in terms of the weak one. This precaution has been taken in order not to
confuse the reader by attributing a new signification to the usual symbol of negation.
In general, in the literature, it is common to use the same symbol to denote classical
negation, intuitionistic negation, minimal negation, etc., even if there is no absolute
definition of what a negation is, and in particular it is not made explicit what the
properties are which distinguish a negation from a unary operator such as a modal
operator.

At the end of the preceding section, we have followed this way of approaching the
issue, by using the usual name and symbol for negation to speak about a paraconsis-
tent negation, even if it was not clear in which sense this negation deserves the name.
An interesting attempt to deal with this problem is to be found in [39].

In a logic, there may be two operators or more, which deserves the name negation.
Thus, of course, the qualification paraconsistent is to be relativized to each of these
negations. In other words, a logic is paraconsistent if there is a negation in which it
is a paraconsistent one.

REMARK 3.2

There are several ways to interpret the informal sentence ‘a obeys the principle of
contradiction’. One possibility is: ‘“~(aA—a) is a thesis’; another one: “‘rom ¢ and -a
we can derive anything’; a third one: if a is true, then —q is false’. In Cy these three
interpretations are equivalent in the sense that using one or another, we get the same
logic; the same arises in Cy. In (8] Cy and C are presented comparatively (with also
some dual and other logics); there, (2) is called the multiplicative law and (2') the
additive law. Correspondingly, C; is called Cz and C’f ; C+. The aim of [8] was not
to study Cj for itself, but to present it among a bundle of possible logics that can be
constructed extending the methods used by da Costa to develop Cj.

The negation in C} as in € is neither truth-functional nor extensional (in the
sense that the replacement theorems does not hold). However, a bivalent semantics
can be provided. This kind of semantics was the birth of the theory of valuation,
initiated by N. C. A. da Costa (see [19, 20]).

REMARK 3.3
It may seem strange to say that a logic in which the replacement theorem does not

hold is not extensional because a lot of logics in which this theorem holds are called
intensional (this is typically the case of the standard modal logics; see e.g. [27]).
However, this terminology from a philosophical point of view seems inadequate and
probably is the consequence of the confusion between truth-functionality and exten-
sionality. This terminology is directly inspired by the one of Wojcicki. Furthermore,
even a logic which is not extensional in our sense does not necessarily deserve the
adjective ‘intensional’; for example, we do not think that C{ (or C}) is an intensional
logic (for a discussion on this topic see [11]).

3.1 Morphology

We consider an absolute free algebra of propositions: P = (P; {~;A;V; D)) of type
(1;2;2;2); ~ will be called the weak negation and A,V and D will be termed conjunc-
tion, disjunction and implication, respectively. ATOM C P is the set of generators
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and the elements of ATOM are called atomic propositions. We will write a,b, ...
elements of P; T,T",... subsets of P; T', A, ... finite subsets of P.

We define the following unary compound function (strong negation): —a = ~ a A
~ (aA ~ a); and the function x from P to P: &(a) = a, for a € ATOM, k(axb) =
r(a)*k(b), forx € {A,V, D}, and finally k(~ a) = ~(x(a)). This last function is then
extended to a function from the power set of P into itself: x(T') = {x(a),a € T'}.

We will use k[ai,...,a,] as an abbreviation for @ A b (when it is not of the form
cA-c),oraVboraDbor ~ a, that is to say, k is a connective and ay, ..., ap are
direct subpropositions of the proposition klai.. .., ap].

3.2 Sequent calculus for C7

3.2.1 The system S*
Given I', A (finite subsets of P), we will use the following notation for the pair (I'; A):
I'—>A. We will use the comma and the blank in the following usual way: we shall
write, for example, —a, A, A’ instead of §—{a} UA U A’. We call PPC the positive
propositional sequent calculus. The rules of ST are the rules of PPC (including the
cut rule) plus the following rules:

I''a — A ' - aA~aA

~ T

I — NG,A F‘N(a,/\wa) - A ~1

T — k{a.l,...,a,p],A Moa,~a — A ~ kil
I, ~klay,....ap] — AN

for each 7,1 <1 < p.

HinT 3.4

The intuitive explanation of the rules ~ kil is the following: the left right premise
says that one of the direct subproposition a; of k[a1,...,ap] ‘obeys the principle of
contradiction’. The rules say that in this condition the usual left rule for the negation
holds for k[ay, . .., ap); this can also be interpreted as kfas, ..., ap] ‘obeys the principle
of contradiction’. In fact these rules are equivalent to the axioms:

~ (aiA ~ a;) D~ (Kla1,. .., ap)A ~ klar, ..., ap))

This equivalence can be proved in a very similar way as the one presented in (7] for
other analogue systems.

For the binary connectives there are thus two ~ [ rules; for ~, there is only one:

I' = ~agAf IMa~a — A
I'T ~~a — AA

NNZ

PROPOSITION 3.5
The rule ~~ [ is equivalent in PPC to the following rule:

I''a — A
I'~~ea —» A
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PRrROOF. Immediate using ~ r and the cut rule. |

THEOREM 3.6
The following schemes are valid in C}:

~ (anb) D (~aVv~D) ~{aVvb) D (~aA~Db)
~{(~aA~b D {avb) ~(~av~b) D (anb)
~(an~b) D (~aVbh) ~(av~b D (~aAb)
~(~anb) D (aVv~b) ~(~aVvb) D (aA~b)
REMARK 3.7

The schemes on the right are not valid in C}.

ProOF. We give just one example; the others follow in a similar way:
We have:

a — a,~b
— a,~a,~b ~r
— vr (3.1)
- aV~b~a a,~a — ~a V1
~(av~b) — ~a
and
b — b ,
b — a,b ~r - ~bb bbb
- a,~0bb ~~ ]
vr ~~b = b
— aV~bb ~1
~~bo~b o o= b V2
~(aV~b — b
(3.2)
Then, from the proofs (1) and (2) we can proceed as follows:
~{av~b = ~a ~{av~b — b Ar
~ (aV ~1D) - ~aAb 5
S~ (@V~b D (~aAbd) "
obtaining in this way the desired sequent. ]

3.2.2  Strong negation and translation to classical logic

THEOREM 3.8
In PPC, ~ r is equivalent to:

I''a =- A -
' » -aA
and ~ [ is equivalent to:
' - aA !
I''a — A

ProOF. Immediate. [ |
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COROLLARY 3.9

Tk a if and only if k(T)Fc+ k(a), (Fr being classical logic and Fo+ the logic ct
generated by the system sH.

COROLLARY 3.10
Let S be an ordinary metastatement about I, then:

S if and only if x(S) (Fc+)

where x(S) os a statement constructed from S replacing a by x(a) and T by «(T) for
every a and T in S.

3.2.3 Cut elimination and corollaries
THEOREM 3.11
Cut elimination holds for C".

PROOF. Similar as the proof for Ci. See [9]. |

COROLLARY 3.12
Cy is decidable.

PROOF. We define the sphere of a proposition a: sph (a) = { b: b is a subproposition
of a or the negation of a proper subproposition of a}; and the sphere of a set of
propositions: sph (T) = {sph (a): a €T }. In a cut-free proof of a sequent (T; AY, it
is easy to see that the only propositions that appear are proposition of the sphere of
FTUuA.

3.8 Semantics

3.3.1 Bivalent non truth-functional semantics
We consider the following set of bivaluations V* C {0,1}":

§ € Yt if and only if:

[A]:d(anb) =1 d(a) =1and ab)y=1

V]:8(avb)=1%d(a)=1or 5b)y=1

D]:6(aDb)=1%d(a)=0o0rd(b) =1

r]:8(a) = 0=0(~a) =1

I]:6[(an~a)=1=d~(an~a)=0

[~ kil]: If 6(k[as, ..., ap]) = 1 and §(a;) =0 or 8(~a;) =0 forone?,(1 <4 < D),
then 6(~ Klai,...,ap]) =0

THEOREM 3.13
[~ r] is equivalent to [-r] and [~ [] is equivalent to [-1] (where [-r] and [-l] are the
usual conditions for classical negation).

PROOF. The same as for C1. See [9]. |

The semantical deductibility relation b+ is defined as usual.
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3.3.2 Trivalent non truth-functional semantics

We consider a set of three values {(0;1), (1;0), (1; 1y} (where (1;0) and (1;1) are both
designated values ) and we define the set Vi of functions from P to this set. We shall
give just, as an example, the conditions for the conjunction:

a . b anb
;1) (0;1) {05 1)
(0;1) (1;0) (0;1)
0;1) {(1;1) (0:1)
1;0) (01 (0:1)
1;0) (1,0) (1;0)
(1,0) (1Y) (1;0)
;1) (0;1) (031)
(1;1)  (1,0) (1;0)
1,1y (1:1) (1;0)
1,1y (1:1) (1;1)

The table presented here is a generalized truth table in the sense of [18]. We will
present such kind of tables in a more precise manner for the bivalent semantics in
Section 3.5.1 below. Each line must be interpreted as a condition the elements of
Vi should satisfy; i.e. for example, the first line of the table states that an element
t of V4 must satisfy the following condition: for every a and b, t(a) = (0 : 1) and
t(b) = (0; 1) implies that t(a A b) = (0; 1).

For a discussion about this non truth-functional three-valued semantics and the
usual many-valued semantics, the reader may consult [21].

The advantage of this semantics is that the values of a compound proposition
depends, as in the classical case, only on its subpropositions.

Thus we have here an example of the usefulness of increasing the number of values
even in a non truth-functional context.

Tt is out of the scope of this paper to present the abstract result of [10]. The
idea, roughly speaking, is to preserve rightly the transformation set of designated
values. This kind of transformation has been used in the case of matrix theory of
Suzko to show how to reduce any many-valued matrix semantics into a bivalent (non
truth-functional) semantics (see [31] pp- 72-73). J.-Y. Béziau in the above referred
paper has extended this method to reduce a wider range of semantics (not necessarily
given by matrix) to bivalent semantics. To do so he has established a more general
result saying that if two semantics are epimorphic they induce the same logic (given
a very general definition of semantics and a corresponding notion of epimorphism).
Furthermore, it is possible to use this result in a ‘reverse’ way, as in the present case,
to increase the number of values.

THEOREM 3.14
T+ a < T!—V;, a.

PRroOOF. We consider the function ¢ from VT to Vi

#(8)(a) = (0; 1) & 6a)=0 and O0(~a)=1
o(8)(a) = (1;,0) < 8(a) =1 and §(~a)=0
o(8)(0) = (L1 < §(a) =1 and §(~a)=1
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Then we use the abstract result about semantical epimorphisms of [10].

3.4 Completeness

The completeness theorem can be proved exactly in the same way as in the case of
C; (see [18]), the adaptation of the proof being very small if we first transform the
system S into a Hilbert-type system, and this can be done also in a very similar way
as in the case of the sequent system for C; presented in [9].

However, J.-Y. Béziau has recently proved a general result on the connection be-
tween sequent rules and conditions for bivaluations which, applying in a particular
case like the ones of V* and S¥, gives instantaneously the completeness theorem (see
e.g. [12]).

It is out of the scope of this paper to present such a result, but we will say a word
about it: this result shows that in the case of some particular sequent systems (those
which are structurally standard in the sense that they contain the usual standard
rules and that there is no particular restriction on the form of the sequent as in the
case of the intuitionistic system LJ), the natural interpretation in terms of truth and
falsity always holds. As the reader may check, the conditions for the bivaluations
[~ kil] are the direct translation, under this natural interpretation, of the rules ~ kil.

3.5 Truth tables

3.5.1 Construction of truth tables
Given a proposition a, the truth table of a is constructed in the following way:

e Write on the first line, all the propositions of the sphere of a, ordering them
according to their complexity;

e Let n € N* be the number of atomic propositions of a, write the n first columns
as in the classical case;

e the n+m (m € N) first columns being completed, write the next column according

to the following instructions:
1. If the proposition on the top is not a negation, proceed as in the classical case;

2. If not, the proposition is of the form ~ b; then:
— Fill the existing lines as in the classical case;
— Among the lines where 1 is written on the column whose top is b, rewrite the

following lines writing 1 on the column whose top is ~ b;

— If b € ATOM, rewrite all these lines;
—1If b = k[ay,....ap), rewrite the lines where the value is 1 for both columns

whose tops are a; and ~ a;, for every i, 1 <4 < p.

THEOREM 3.15 (SOUNDNESS AND COMPLETENESS OF THE METHOD)
Given a truth table for a proposition b:

e Each of the functions defined by a line of the truth table can be extended to a
function from P to {0, 1} which is a member of V*.

e Given a function 6§ € VT, its restriction to the sphere of b is identical to the
function defined by a line of the truth table.
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PrOOF. The proof is carried out in a similar way to the proof for C,; see for example

[18]. |

COROLLARY 3.16
Cy' is semantically decidable.

3.5.2 Applications of the method

THEOREM 3.17
The following schemes are not valid in C7:

(~an~b) D ~ {aVb) (~aV~Db) D ~ (anb)
{a A b) 5 ~(~aVv~Db) (aVb) O ~(~aA~b)
(~anb) D ~(aVv~Db) (~avbh) D ~f(aA~Db)
(an~b) D ~(~aVb) (av~b) D ~(~anb)

PROOF. We give just one example:

~a ~b ave~b ~(aV~b ~aAb (~aAb)D~(aV~D)
0

V+

et ped e e e O - O O R
e b O ] R O e O O
et ot et (D el O O
Pt el D et b ek [ D e D
bk et e e e ] e (O
O O O O OO O
ke e OO OO = O
et DD e Of bt bk e

THEOREM 3.18
None of the following forms of contraposition is valid in Cct: (@a2b)D(~bD~a),
(~aDb)D(~bDa) (aDdD~b)D(bD~a)and (~aD~b)D(bDa).

PROOF. We give just one example, constructing the truth table of (ad>byD{(~bD
~a):

.

~a ~b adb ~bo~a (aDb)D(~bD~a)
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COROLLARY 3.19
The replacement theorem does not hold for C;.

C. Mortensen has shown that in () it is not possible to define an equivalence
relation which is not the identity (see [33]). C;" has the very interesting feature of
having a non-trivial congruence that we call well-equivalence.

We say that a and b are logically equivalent (notation: a = b) when for every
5 e V*t, dla) = 6(b).

A proposition a is said to be well-behaved when for every 6 € Vvt éa) =1 =
é{~a)=0

Now we say that a and b are well-equivalent (notation: a =~ b) if and only if they
are both well-behaved and if they are logically equivalent.

LEMMA 3.20
If a proposition has a well-behaved subproposition, then it is well-behaved.

PROOF. The proof is carried out by induction on the complexity of a proposition a.
The case where a is an atom trivially holds because it has no well-behaved subpropo-
sition. If a is of the form b A =, it also trivially holds because a is well-behaved.
Now suppose that a = k[a1,...,ap]. If a has a well-behaved subproposition, it is
either a direct subproposition of a or it is a subproposition of, at least, one a;(1 <
i < p), then by the induction hypothesis there is, at least, one direct subproposition
of a which is well-behaved. Thus, if a has a well-behaved subproposition, it has a
direct well-behaved subproposition, from which we can conclude (by [~kil]) that a is
well-behaved.
THEOREM 3.21
The relation of well-equivalence is a congruence relation for cy.

PROOF. Given a proposition ¢ and two propositions a and b such that a is a proper

subproposition of ¢ and such that a ~ b, we will prove by induction on the complexity

of ¢ that: c[a] = c[b/a], where c[b/a] is the proposition that we get replacing a by b

in ¢.

i) If ¢ is an atom, the property vacuously holds.

ii) ¢ is a complex proposition of the form ~ d.
By the lemma just proved, d[a] is well-behaved; thus, we can apply the induction
hypothesis and we will have: dfa] = d[b/a]. By the same lemma, we also know
that d[b/a] is well-behaved.
Now suppose that there exists § € V¥ such that 6(~ d[a]) =0 and é(~ d[b/a]) = 1
(the other case is left to the reader); thus, by [~1], (d[a]) = 1 and dé(d[b/a]) = 0
because d[b/a] is well-behaved, but this is absurd because d[a] = d[b/a].

iii) The other three cases are easy and are left to the reader.

4 Applications of paraconsistent logic

4.1 The usefulness of paraconsistent reasoning

There are many useful applications of paraconsistent logic for all kinds of reasoning,
artificial or natural. The advantages of employing this logic are obvious: in the pres-
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ence of a contradiction, we can go on making interesting reasonings (especially using
a very strong paraconsistent logic like C}") without, as in classical logic, (1) supposing
that one of the terms of the contradiction must be rejected or (2) deriving anything.
Obviously, (2) is the dead end of logical reasoning, but (1) is, without luck, not better,
for if we make the wrong choice there is no way out. And in many cases it is simply
not possible to know which is the wrong choice and which is the right one. Maybe
there is, in reality, no contradiction. But it seems that contradictions are enclosed in
any important amount of complex knowledge. Perhaps these contradictions are only
fictitious contradictions. But even if there is, now, in the present state of affairs, no
way to solve these contradictions, it may be useful to deal with them, without the
peril of direct triviality.

We shall give here concrete examples of reasoning involving contradictions. We take
the example of medicine, which has already been investigated in [23] using another
paraconsistent logic different from the ones presented in this paper. Medicine is a
subject of special interest, because it is not rare that two physicians give two different
contradictory diagnostics for the same observable symptoms. This is not necessarily
due to the incompetence of the physicians, but rather to the complexity of medicine.
And thus this situation can also arise in the case of a MES (Medical Ezpert System,).

4.2 Ezamples of paraconsistent reasonings in Medicine

John Smith is sick; he goes to Dr. Bouvard and this one tells him that he has got
cancer. John Smith decides to consult another specialist, namely Dr. Pécuchet, who
turns out to be categorical: he tells him that he has not got cancer.

Dr. Pécuchet does not agree with his colleague on this point and many others but
there is at least one thing that they both recognize:

If John Smith has got cancer he will die in the next three months.

John Smith is very bewildered, he thinks one of them must be wrong, but he does
not know which one, because Dr. Bouvard is a very renowned physician and so is Dr.

Pécuchet. »
Now we will show that if John Smith uses paraconsistent logic, he can make inter-
esting reasonings, without supposing that Dr. Pécuchet or Dr. Bouvard is wrong.

Reasoning 1:
We will show that from the statement of Dr. Bouvard, the statement of Dr. Pécuchet

and the statement they both agree on we cannot infer that:
If John Smith has not got cancer he will not die in the next three months.

Let us use the following transcriptions:

(a) John Smith has got cancer.
(b) John Smith will die in the next three months.

Thus we will show that: {a,~a,a D b} Ver ~ad~b.

PROOF. There exists § € V* such that §(a) = d(~a) = 6(a D b) = 1 and d(~a D
~b)=0:
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a ~a b ~b adb ~aDdD~b
1 1 1 0 1 0

REMARK 4.1
This proof is valid in €7 and even in the fragment C; (see [9]) of C.

Now, we are going to give an example of reasoning typical of C’fr .

Reasoning 2:

Suppose Dr. Bouvard says:

It is not possible that:

John Smith has not got cancer

and

John Smith will die in the next three months.

From this statement {and only this one) we will show that we can infer, as in
classical logic, that:

If John Smith has not got cancer he will not die in the next three months.

PROOF. We can interpret ‘it ¢s not possible that & as ‘there exists § such that §(d) = 0’
(see Wittgenstein's Tratactus, 4.464 /5.525).

For every § € V*, we have §(~ a A b) = 0; using [~r], we get: for every 6 € VT,
8(~ (~ a Ab)) = 1. Using the completeness theorem, we have: }"cj ~ (~aAb). We

shall now give a proof of the sequent ~ (~aAb) > ~aD~bin C;.

b—b N
~a—~a —b,~b /\71
~a = (~aAb),~b by~ b—~1b ~ A2

~(~aAb).~ao~b

~{(~aAb)y—~aD~b -7

Thus we have {~ (~a A b)}f-cl+ ~a D ~b, from which we can conclude that
FC;’ ~aD~b | |

REMARK 4.2

This reasoning is not only typical of Cf‘ by contrast to Ci, in the sense that it is
not valid in Cp; but also by contrast to classical logic, in the sense that if we are in
the presence of contradictions, there is no trivialization. That is to say, if we have
furthermore a contradictory hypothesis, from the point of view of the weak negation
~, such as i-C1+ ¢ A ~ ¢; for example the sentence Dr. Bouwvard is a quack and Dr.

Bouvard is not a quack.

What we can say about these two examples of reasoning is that, in presence of
contradictions, C;" does not allow us to do some reasoning which is not valid without
contradictions (cf. Reasoning 1: we can not deduce ~ a D ~ b from a D b in classical
logic and it is not possible to do so in presence of a set of contradictory hypotheses
such as {a, ~ a}), but C;" allows us to do a good part of classical reasoning in presence
of contradictions without reaching triviality (Reasoning 2).
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5 Some philosophical remarks

From a philosophical perspective, just as from a technical one, paraconsistent logic
has also given rise to various, interesting considerations. However, by no means shall
a comprehensive approach be proposed here. The following brief remarks are devised
only to acquaint the reader with some already explored lines, leaving to further works
a more detailed approach (for additional philosophical considerations, see [15], [35]
and [37]).

At the outset, it should be clear that, despite being a non-classical logic, paraconsis-
tent logic, from our viewpoint, does not constitute a tentative approach to challenge
classical, standard logical conceptions — whose domain and main features are assured
beyond any doubts. Rather, it was mainly devised in order to supply alternative tools,
not found in the extant formalisms, so that some specific mathematical and logical
problems, not possibly addressed to within a classical framework, could be reasonably
considered. For instance, in order to study semantical paradoxes in set theory, taking
them at face value, and not trying (as usual) only to evade them, some paraconsis-
tent machinery is called for. Similarly, the analysis of specific principles in their full
cogency — as, for example, the principle of comprehension in set theory or in higher
order predicate logic — also demands considerations on paraconsistent grounds. Or
else, a deeper understanding of some concepts, such as of negation, can be better at-
tained through the employment of a paraconsistent framework ([3], pp. 11-12).These
are just some possible examples to illustrate our point; there are, though, still many
others that could be mentioned, if it were necessary.

More importantly, however, is perhaps to stress, once again, the parallel, from a
conceptual point of view, between the creation of Non-Euclidean geometry and the
rise of paraconsistent logic. Undeniably, both of them present, within mathematical
and logical contexts, unquestionable relevance. Nevertheless, in addition to this, and
opposed on this regard to many other scientific theories, their philosophical signifi-
cance is also incontestable. In effect, if non-classical geometries have afforded us a
deeper understanding of some scientific notions, non-classical logics in general, and
paraconsistent logic in particular, have provided a crucial theoretical setting to grasp
the true meaning of logicity. In both cases, the gain is enormous.

It also deserves to be remarked that paraconsistent logic can be further regarded
(within the context of its applications as well as of its interpretation) from two dif-
ferent points of view: (1) as a logic complementary to classical logic (for instance,
by interpreting its negations as connectives more general than classical negation); or
(2) as a kind of heterodox logic, incompatible with classical logic, whose destiny is to
replace the latter in all or some of its applications.

Determining which of these possibilities is the case in general, however, is something
rather delicate. Indeed, such a question seems not to present a direct answer, for
paraconsistent logic is not a uniform subject; we can, in fact, construct rival as well
complementary paraconsistent logics. Moreover, to a certain extent, this issue cannot
be established only through the resources supplied by logic and mathematics alone,
but further philosophical considerations (related, in particular, to the philosophy of
sciences) are needed as well. Notwithstanding this, particular cases can be frequently
analyzed.

For instance, with regard to C;, we should remark, it can be viewed as complemen-
tary to classical propositional logic, exactly in the same sense as a modal logic, such
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as e.g. S4, is complementary to this very logic. Suppose that we have the usual abso-
lutely free algebra, of propositions P = (P;(—; A; V; 1)), and the usual corresponding
classical notion of deduction . Now, consider the algebra P(~) = (P; (=; A;V; ~)),
and suppose that ~ obeys the rules of the weak negation of Cj". C{ is a conserva-
tive extension of I\, in the sense that the restriction of }—C; to P is Fg. But the
interesting point to know is whether, when defining the strong negation as we have
done, we get the ‘same’ negation as the one which was already there. In C4, —a is
logically equivalent to ~ aA ~ (aA ~ a). But this property is not very satisfactory,
for we cannot replace, in C,, one of this proposition by the other; for instance, ~ —a
is not logically equivalent to ~ (~ aA ~ (aA ~ a)). But in C}", we can accomplish
this, using the fact that —a and ~ aA ~ (aA ~ a) are congruent formulas, as defined
in 3.5.2.

Therefore, the conclusion is that C; is really an extension of classical logic, which
(in this sense) complements it. Within C;, we can deal with all we have been deal-
ing with in classical logic, with no alterations, and furthermore, we can use a weak
negation which permits us to make some extra patterns of reasoning as well.

However, we should note that, in general, the very distinction between rivalry and
complementarity in connection to non-classical logics is something not precise, and
a detailed examination of this issue depends on the particular formulations such a
distinction receives. There are certainly circumstances, nevertheless, in which one
can employ paraconsistent logic, and in which classical logic cannot be applied (for
instance, in the semantical analysis of some paradoxes, such as Russell’s: Russell’s
set erists in some paraconsistent set theories). In this sense, paraconsistent logic is
rival to classical one.

The big question, however, is to know whether our world is in fact contradictory
or not, and such a question was not definitively answered yet.

Anyway, in connection to this question, there are those who claim that para-
consistent logic is rivael mainly because of the existence of some ‘true contradic-
tions’ (cf. [34]). But what are the exact connections between the problematic ri-
val/complementary and the belief in the existence or non-existence of contradictions?
For instance, Priest and Routley seem to believe that true contradictions entail that
paraconsistent logic is a rival logic. As far as we see it, nonetheless, and in conformity
with what we have just remarked, independently of a commitment to this kind of
contradiction, paraconsistent logic may be conceived, in certain contexts, as a rival
one. However, we shall not pursue this issue further here.

A final word. We should note that there are infinitely many non-equivalent para-
consistent logical systems. In this respect, the situation is similar to that of modal
logic. On the other hand, as it was already mentioned above, paraconsistent logic
has given rise to various important developments in philosophy, mathematics, the
empirical sciences as well as technology.

For details, one may consult, for instance, [3, 25] (both of these interesting and
highly informative papers — which were extensively used in order to articulate the
historical outline presented in Section 1 above as well as the present philosophical
remarks — contain a rather detailed list of bibliographical references) [34, 2, 28, 32].
For an overview, see [22].
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