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Abstract

We first explain what it means to consider logics as structures.
In a second part we discuss the relation between structures and ax-
ioms, explaining in particular what axiomatization from a model-
theoretical perspective is. We then go on by discussing the place
of logical structures among other mathematical structures and by
giving an outlook on the varied universe of logical structures. Af-
ter that we deal with axioms for logical structures, in a first part
in an abstract setting, in a second part dealing with negation. We
end by saying a few words about Edelcio.

1 Logics as structures

It is usual nowadays to consider a logic as a structure of type L = 〈F;`〉
where
• F is a set of objects, called formulas. Sets of formulas are called
theories.
• ` is a binary relation between theories and formulas, i.e. `⊆ P(F)×F,
called consequence relation.

The idea is to consider this kind of structure in the same way as
other mathematical structures. A structure than can be seen as a model
of some axioms, similarly for example to a structure of order O = 〈O;<〉
where
• O is a set of objects.
• < is a binary relation between objects i.e., <⊆ O × O, called order
relation.

The situation for logical structures is a bit ambiguous, tricky, mys-
terious because there is an interplay between the method used and the
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objects under study. These objects are logics and the method used is
part of logic, namely model theory. There are four mammals of mathe-
matical logic, in order of appearance:
• Set Theory
• Proof Theory
• Recursion Theory
• Model Theory.

In modern times there has been a proliferation of logical systems, that
can be simply called logics and that we consider here as logical structures.
The study of logical systems can be called metalogic. It is performed
using the four mammals of modern logic. Since 1993 the present author
has promoted universal logic [3], not as one system among the jungle
of logical systems, not even as a super system. Universal logic is a
general theory of all these logical systems, in a way similar to universal
algebra, which is a general theory of algebraic systems, or simply algebras.
And, like in universal algebra, the idea is to consider these systems as
mathematical structures. Universal logic is part of metalogic or/and a
way to approach metalogic, using in particular model theory, but it can
also be developed using for example category theory.

One ambiguity we are facing here is that the word theory is used in
three different ways:
•When we are talking about model theory, the word is used in the sense
of a general scientific field, like relativity theory, the theory of evolution
or number theory.
• In model theory, a set of axioms that characterizes a given class of
structures, is called a theory, for example a set of of axioms for lattices.
This is different from Lattice Theory, which is the study of all the dif-
ferent kinds of lattices and the way they can be axiomatized.
• In universal logic we are considering structures where a set of objects
is called a theory. This is not the case when dealing with a structure
whose elements are, for example, numbers.

2 Structures and axiomatization

Model theory does not reduce to the study of logical structures, it deals
with any kind of structures. There is no canonical definition of model
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theory. In a general perspective, we can say that model theory studies
the relations between structures and axioms.

Given a class of structures, we may want to axiomatize it, by find-
ing some axioms whose models are exactly the structures of this class.
On the other hand, given some axioms, we can investigate the class of
structures that are models of these axioms.

What is a structure? We can reply to this question in the same
way as we can reply to the question What is a cat? by pointing at our
favorite cat Miaou. Let us therefore first start with an ostensive reply,
by pointing at a famous structure, the structure N = 〈N, <〉 where
• N is the set of natural numbers.
• < is the relation of strict order between natural numbers.

In some sense it is quite easy to understand what it is, a 7-year
old child can understand it. Natural numbers such as 0, 1, 2, 3, 4, 5,
are well-known and also one can understand what a big number like
7.794.798.739 (the number of human beings on Earth, right now) is. All
numbers have a name, it is not like dogs. And if we ask if 7689 < 987
we know how to answer. We don’t even need a calculator (curiously
calculators generally don’t make this kind of operation, maybe they
think there is no operation to perform here).

A more complicated story is to find some axioms which characterize
this structure. What does this mean? An order relation is transitive
and anti-symmetric:
• If a < b and b < c then a < c.
• If a < b then b 6< a.

But the relation of strict order on natural numbers does not reduce to
these axioms, or, to put it the other way round, such axioms are not
enough to characterize it. An additional axiom is for example the fol-
lowing:
• Given any number a, there is a number b such that a < b.
This can be expressed in a more colloquial way as:
• There is not greatest natural number.
And in a more formal way as:
• ∀x∃y xRy.
Note that in both cases the symbol “<” was sent to the sky. Its presence
is only in the middle way, which is generally the way of the mathemati-
cian by contrast to the butcher and the logician.
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One may want to find a set of axioms that exhausts all properties
of the relation < of the structure N = 〈N;<〉. From a structuralist
point of view, this also means that it characterizes the natural numbers
themselves. The numbers are nothing else than their relations, a number
like 9 has no inner nature, what it has, is, its position. The structuralist
approach was strongly promoted by Bourbaki [11].

It is not possible to axiomatize in first-order model theory the struc-
ture N = 〈N;<〉. Any set of axioms expressed in first-order logic has
models which are different from the structure N. This result is due to
Skolem [18]. This is an application of the compactness theorem, accord-
ing to which if every finite subtheory of a theory has a model, this theory
has a model.

We will not enter here in the details of such kind of result: its relation
with Gödel’s first incompleteness theorem and so on. But we take this
example to emphasize three important characteristics of axiomatization
from a model-theoretical perspective:
• Model-theoretical axiomatization is not the same as proof-theoretical
axiomatization, i.e. to derive some theorems from some basic principles,
called axioms.
• In the perspective of model-theory, axioms are specific cases of theories,
they are finite or recursive sets of formulas.
• Axioms, as well as theories, are generally expressed in a specific formal
language, the most famous one being the language of first-order logic.

Having made these clarifications, we will in the next sections present
logics as structures in a model-theoretical way, studying the relation be-
tween these structures and some axioms. We will stay in the middle way
of ordinary mathematics, not specifying, not formalizing too much, the
language we are using for expressing the axioms. We just want to point
out that if this would be formalized, it would not be naturally formalized
in the language of first-order logic, because the central concept of logical
structures, the notion of consequence relation, is a relation between sets
and objects, typically a second-order relation, by contrast to first-order
relations which are only between objects.

We conclude this section emphasizing two points. The first-point is
that using logic to talk about logic can be done in a fruitful and intelli-
gent way. Linguists use language to talk about languages, this is not a
problem, there are no vicious circles if the perspective is clearly under-
stood. For example it should be clear that general linguistics, the theory
of all languages, is not itself a super language. It is expressed and devel-
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oped using languages, there is no priority of a given language for doing
that. The second point is that what we are doing here is not funda-
mentally new, it is in the line of the Polish school of logic: connected to
some works of Tarski (consequence operator), Roman Suszko (abstract
logic) or Helena Rasiowa and Roman Sikorski The mathematics of meta-
mathematics (see [4], [6] and [9]). The difference between the approach
presented here, Universal Logic, is that we are thematizing the notion of
logical structure and clearly differentiating these structures from other
mathematical structures, as we will explain in the next section.

3 Logical structures within the family of math-
ematical structures

Let us come back to our starting point:

Logical structures
A logic is a structure L = 〈F;`〉 where
• F is a set of objects, called formulas. Sets of formulas are called
theories.
• ` is a binary relation between theories and formulas, i.e. `⊆ P(F)×F,
called consequence relation.

Logical structures are part of the family of mathematical structures.
Using the biological hierarchical distinction between family, genus, and
species, we consider that logical structures are a specific genus of struc-
tures. Let us examine three other genera of the family.

Order structures
A structure of order is a structure O = 〈O;<〉 where
• O is a set of objects.
• < is a binary relation between objects i.e. <⊆ O × O, called order
relation.

Algebraic structures
An algebraic structure is a structure A = 〈A;f(i∈I)〉 where
• A is a set of objects.
• f(i∈I) is a collection of functions defined on A.

Topological structures
A topological structure is a structure T = 〈P;T〉 where
• P is a set of objects, called points.
• T is a set of subsets of P called a topology.
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All these four genera of structures are similar in the sense that they
are made of a pair. The left part of the pairs are all the same, this is a
naked set. But there is a variation on the right side, this is the essence of
the genus. The right part is often called the signature. Two structures
having different signatures are of different genera.

An order relation is not considered as of the same genus as an algebra
because its signature is a binary relation, whether in the case of an
algebra the signature is made of functions. The signature of an algebra
may vary: it can be only one binary function or one unary function
together with two binary functions, etc. So we have different species of
algebras. A group is not of the same species as a ring.

It is not necessarily easy to make the difference between species and
genera of structures. For example if in the definition of logical structures,
we replace the signature by a binary relation on the Cartesian product
of the the power set of formulas, i.e. ⊆ P(F)×PF, can we say that we
still are in the same genus?

Also a structure of a particular type can be equivalent to a structure
of a different type. A striking example is a result of Stone showing that
a Boolean ring is the same as a distributive complemented lattice (see
[19]). A Boolean structure can be presented as a structure of order or
as an algebra, or as a mix.

The equivalence between structures of different types has been con-
ceptualized in model-theory with the notion of expansion. Two struc-
tures are equivalent if they have a common expansion by definition up
to isomorphism.

There is also a well-known correspondence between the notion of
Boolean algebra and logical structures: by factoring classical propo-
sitional logic, we get a Boolean algebra. Logical structures can be
“viewed” as algebras, but this is not always the case, and it is only
one point of view.

4 The diversity of logical structures

There are different ways to define a logical structure. First of all let us
consider three variations of the signature:

Tautological logical structures
A logic is a structure L = 〈F;T〉 where
• F is a set of objects, called formulas. Sets of formulas are called
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theories.
• T is a set of formulas called tautologies.

Consequence logical structures
A logic is a structure L = 〈F;`〉 where
• F is a set of objects, called formulas. Sets of formulas are called
theories.
• ` is a binary relation between theories and formulas, i.e. `⊆ P(F)×F,
called consequence relation.

Multiple-conclusion logical structures
A logic is a structure L = 〈F;〉 where
• F is a set of objects, called formulas. Sets of formulas are called
theories.
•  is a binary relation between theories and theories: ⊆ P(F)×P(F),
called multiple-consequence relation.

The first formulation corresponds to how logical systems were orig-
inally conceived at the beginning of the 20th century. The second ap-
proach was mainly promoted in Poland but using a different set-up (see
[20]), which is the following one:

Consequence Operator
A logic is a structure L = 〈F; Cn〉 where
• F is a set of objects, called formulas. Sets of formulas are called
theories.
• Cn is a binary function from theories to theories, i.e. from P(F) to
P(F), called consequence operator.

These two set-ups are equivalent independently of any axioms. Multi-
ple-conclusion logical structures were developed only in the 1970s (see
[17]), although one may say that they already showed up in the case of
Gentzen’s sequent-calculus [14], but this is rather ambiguous as we will
explain in the next section.

Let us point out that we have presented all these variations on the
one hand without specifying the structure of the set F, on the other
hand without stating some axioms for the “thing” which appears in the
signature. This is typical of the universal logic approach we have been
developing, but focusing on the second type of structures, i.e. conse-
quence logical structures. The spirit of axiomatic emptiness (cf. [7]) can
however also be applied to other types of logical structures. Regarding
the dressing of the naked set F, there are various ways to proceed also
independent of the signature. A typical dressing, for propositional logic,
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is to consider the domain of the structure as follows (cf. [15]):
• F is an absolutely free algebra 〈F;∧,∨,¬〉 whose domain F is generated
by the functions ∧,∨,¬ from a set of atomic formulas A ⊆ F.
We have then a mix of two kinds of structures, by putting within a log-
ical structure an algebra. This is what Bourbaki called a carrefour de
structures.

The model-theoretical axiomatic methodology for logical structures
does not mean that we need to fix a set of axioms. It is similar to
universal algebra. There are good reasons not to fix a set of axioms, both
philosophically and theoretically. Let us just consider the theoretical
aspect here. Among all logical structures, it is interesting to consider
the two extreme cases:
• Nothing is a consequence of nothing, i.e. `= ∅
• Everything is a consequence of everything, i.e. `= P(F)× F
And also it is interesting to consider that the opposite of classical logic,
i.e. the set-theoretical complement of the consequence relation of this
logic, is a logical structure. This is what we have called anti-classical
logic [10]. It is not possible to host all these structures, in the universe
of logical structures, if we are working with a specific set of axioms.

Similarly to the universal algebra approach the universal logic ap-
proach does not mean that we will not consider axioms. But axioms
are always relative and are a way to classify and study the relations be-
tween different logical structures, to navigate within the ocean of logical
structures

5 Axioms for abstract logical structures

The most famous axioms for logical structures are the three following
Tarski’s axioms (cf. [5]):
• a ` a (Reflexivity)
• If T ` a and T ⊆ U then U ` a (Monotonicity)
• If T ` a and U, a ` b then T,U ` b (Transitivity)

We call Tarskian logic, a logical structure obeying these axioms. These
axioms were originally presented by Alfred Tarski but in a different
way because, he was working with a consequence operator, not with
a consequence relation. There are lots of different equivalent ways to
present these axioms, even within the same type of structures. For
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example sometimes reflexivity is presented as
• T, a ` a (Extended reflexivity)

If we are a minimalist, it is not necessary to present it in this way
because in fact this can be deduced from the three above axioms: by
reflexivity we have a ` a, and since a ⊆ {T} ∪ a, applying monotonicity
we have T, a ` a. Since a ` a is a particular case of T, a ` a, i.e. the case
when T = ∅, the axiom a ` a is equivalent to the axiom T, a ` a modulo
monotonicity. This means that if we replace the axiom of reflexivity by
extended reflexivity we define the same class of logical structures.

We have shown that extended reflexivity is deducible from reflexiv-
ity using monotonicity. Is this a proof? Yes! But an informal proof as
standard mathematicians are doing, when dealing with order structures,
algebraic structures, etc. Such kind of proof cannot be easily translated
into first-order logic, like in fact most of mathematical proofs, in par-
ticular here because we are using second-order structures, but this can
be translated into first-order logic for example via set theory. Although
we are aware that this is not straightforward and that some complica-
tions may show up, we are, to start with, not interested to work on the
formalization in first-order logic of such proofs.

What is important for us here is to make a clear distinction be-
tween this structural approach and a proof-theoretical approach such as
sequent calculus. There can be some confusions, which are in partic-
ular generated by terminology and symbolism. For example the above
Tarski’s axioms look like the so-called structural rules of sequent calculus.
But are they the same? Can we identify the cut-rule with transitivity?
This would be highly misleading.

Gentzen’s sequent system LK generates a logic which is the same
as the logic generated by LK−, i.e. LK wihtout the cut-rule. The
logical structure generated by LK− is the same classical logic as the
one generated by LK. The consequence relation generated by the cut-
free system LK− is transitive! This is what shows the cut-elimination
theorem.

What is interesting however is that we can develop informal proofs
about logical structures which are inspired or directly imported from
sequent calculus and vice-versa, we can import informal proofs about
logical structures within sequent calculus. This is important because
this can secure an “algorithmic” aspect. Note however that even if
everybody agrees about the computable aspect of first-order classical
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sequent-calculus, this does not mean that the metatheory of this system
is itself formalized.

But the idea we are discussing here it the applications of model-
theoretical methods to the study of logical structures. Let us give a
fairly simple example. Consider for example the following axiom:
• If T ` a then there is To finite, To ⊆ T such that To ` a (Compactness)
We can show that this axiom is not a consequence of Tarski’s axioms by
giving an example of a logical structure which verifies Tarski’s axioms
but not the axiom of compactness. An example of such a structure is
second-order classical logic considered from a standard model-theoretical
way.

6 Axioms for logics of pure negation

The law or principle of non-contradiction was traditionally considered as
a basic principle of logic. It was considered either as a law of thought or
a law of reality, or both. We will not discuss these pataphysical questions
here. There are even more extravagant people considering that this law
has to be rejected. We will also not comments this kind of extravagance.
What is important for us here is to show how we can have a new and
hopefully better understanding of this law using the model-theoretical
approach, independently of wanting to approve or reject it.

Boole formulated the law of non-contradiction as x(1 − x) = 0 and
showed how to deduce it from x2 = x, which for this reason he con-
sidered as the fundamental law of thought (see [8]). This is a purely
algebraic approach in the sense that he is using functions and equalities.
But we don’t consider algebra as a panacea for mathematics, there are
other mathematical structures, and moreover we consider that a differ-
ent approach provides a better understanding.

We consider negation as a unary function ¬. The second step is
to consider this function on a naked set, with only this function, so
we have the following structure: F = 〈F;¬〉. The third step, which is
properly original. is to consider the structure: LPN = 〈F;`〉. LPN is
an acronym for Logic of Pure Negation. And then we consider axioms
for this negation.

There are here two important features directly connected with the
spirit of universal logic:
• We can work with an algebra which is not necessarily an absolutely
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free algebra. We may have an algebra where ¬¬a is a, or even ¬a is a.
• The axioms for the consequence relation are not absolute. Axioms for
negation can be considered independently of axioms for the consequence
relation.

We can consider the following axiom:

Given T and a, for any x: T, a,¬a ` x

independently of Tarski’s axioms for consequence relation. And also we
can consider the relations between the above axiom and the following
second one

Given T and a: T,¬a ` x, for any x iff T ` a

according to or not according to such or such axiom for the consequence
relation.

We have shown that it is possible to deduce all axioms for negation
from this second axiom, modulo Tarski’s axioms (see [2]). Can we call
this axiom, the axiom of non-contradiction? To answer this question it
is important to study the relation between this axiom and the following
principle:

a is true iff ¬a is false,

To do so we need to connect a theory of truth and falsity with general
abstract logic. This has been done by Newton da Costa with his theory
of valuation on which we have been working together (see [12]).

7 Dedication and acknowledgments

I am glad to dedicate this paper to Edelcio whom I have known since
1991. I met Newton da Costa in Paris in January 1991 and he invited
me to come to work with him for one year at the University of São Paulo.
Arriving at São Paulo’s airport in August 1991 da Costa was there to-
gether with Edelcio, who was one of his students. I stayed at Edelcio’s
flat for a few days in the district of Campos Eĺısios (Champs-Élysées)
and then he took me to a residence in the campus of the university.

Since then I have continuously been in touch with Edelcio, for ex-
ample taking part to the jury of his PhD Student Patricia del Nero
Velasco [16]. And we share some common interest: chess, Italian food
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and logical structures of course. That’s why I decided to choose this
topic for the present paper. In particular Edelcio took part to the 1st
World Congress on Universal Logic (UNILOG’2005) that I organized in
Montreux in 2005 with the help of Alexandre Costa-Leite, the editor of
this volume, who was doing a PhD with me at this time at the University
of Neuchâtel in Switzerland [13].

Edelcio, together with Alexandre and Hilan Bensusan, wrote a pa-
per for the Festschrift volume of my 50th birthday: “Logics and their
galaxies” [1]. I am glad to reward him by the present paper.

Edelcio on the way to Marmot’s paradise during UNILOG’05
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