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ABSTRACT. In this paper we present a bivalent semantics for De
Morgan logic in the spirit of da Costa’s theory of valuation showing
therefore the uselessness of four-valuedness - the four-valued Dunn-
Belnap semantics being ordinarily used to characterize De Morgan
logic. We also present De Morgan logic in the perspective of univer-
sal logic, showing how some general results connecting bivaluations to
sequent rules and reducing many-valued matrices to non-truth func-
tional bivalent semantics work.

1 De Morgan logic in the perspective of universal
logic

In this paper we present a systematic study of a very simple and nice logical
structure, De Morgan logic. This is a logic with a negation which is both
paraconsistent and paracomplete, that is to say neither the principle of
contradiction, nor the principle of excluded middle are valid for De Morgan
negation, but all De Morgan laws hold, the reason for the name. This logic
shows therefore the independence of the principle of contradiction and the
principle of excluded middle relatively to De Morgan laws .

This logic is not new. It is connected with De Morgan lattices which
can be traced back to Moisil [22] and which have been called quasi-boolean
algebras by Rasiowa, [13], distributive i-lattices by Kalman [20], and have
been especially studied by the school of Antonio Monteiro in Bahia-Blanca,
Argentina [23].

1Negations which are both paraconsistent and paracomplete were called by da Costa
non-alethic, we have proposed to used instead the adjective paranormal in order to keep
the paraterminology. De Morgan negation is a good example of paranormal negation,
it can reasonably be considered as a negation, due to the fact that it obeys De Morgan
laws.
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If we factor a De Morgan logic by the relation of logical equivalence,
we get a De Morgan lattice, and an intuitive semantics for De Morgan
logic is a matrix corresponding to a very De Morgan lattice, a four-valued
lattice. This kind of semantics is connected with Dunn-Belnap four-valued
semantics [3]. Michael Dunn especially made the connections between De
Morgan lattices and logical systems [17]. This connection was later on
studied by J.M.Font and V.Verdu [19] [18], O.Arielli and A.Avron [2] and
A P.Pynko [26].

We are facing here a phenomenon similar to the one happening with
classical propositional logic: at the same time the factor structure of classical
propositional logic is a Boolean algebra and its matrix semantics is the
smallest Boolean algebra.

We show in this paper that it is also possible to construct a bivalent
semantics for De Morgan logic, along the line of Newton da Costa’s theory
of valuation [16]: it is a non-truth functional bivalent semantics. And we
also show how to establish the connection between this bivalent semantics
and the four-valued De Morgan matrix.

In some previous papers we have shown how we can establish a close con-
nection between non-truth functional bivalent semantics and sequent rules
[12]. We also have proven some general results of reduction of semantics to
bivalent semantics [7]. This is part of a general study of logical structures,
we have called universal logic [5].

This paper is the opportunity to illustrate these general results of uni-
versal logic, as we already did for Lukasiewicz logic L3 [9] and also to point
out some problems that could be usefully clarified by universal logic.

2 De Morgan logical structure
DEFINITION 1. A De Morgan logic is a structure M = (F;F), where

e F is an is an absolutely free algebra (F; A, V,—) whose domain F is
generated by the functions A, V, = from a set of atomic formulas A C F.

e |- is a structural consequence relation obeying, besides the usual ax-
ioms for classical conjunction and disjunction, the following axioms:

[-A] =(a AD) T+ —a Vv —b
[-V] =(aVb) 4 —a A b
[-—] a 4+ =—a
where z - y means x -y and y F x.

Defining a logic in this way is typical of the Polish approach [24], al-

though in Poland people generally prefer to use the notion of consequence
operator rather than the notion of consequence relation, but this is trivially
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equivalent. The notion of structural consequence operator is due to Los
and Suszko [21] and it is the continuation of Tarski’s theory of consequence
operator which began at the end of the 1920s [27].

One has to be aware that such kind of definition is not proof-theoretical,
it is not a system of deduction. The use of the word aziom and of the symbol
F may lead to such kind of confusion. But as it is known the word aziom is
also used in model theory. Such a definition has to be seen as a definition
of for example the model-theoretical definition of structures of order. What
we call a De Morgan logic is a model of the above group of axioms which
defines the meaning of the relation F and of the functions A, V, —.

The kind of definition we are using here is of the same type for example as
the definition of a De Morgan lattice. Moreover there is a strong connection
between these two definitions, since the factorization of a De Morgan logic
by the relation —F, which is a congruence, is a De Morgan lattice.

Let us recall the definition of a De Morgan lattice.

DEFINITION 2. A De Morgan lattice is a distributive lattice (E;N, U, ~)
where the unary operator obeys the two following axioms:
~(anNb)=~aU~b

a=nr~nr~a

3 Sequent System for De Morgan logic

DEFINITION 3. A De Morgan sequent system LM is a sequent system
which has the same rules for conjunction and disjunction as the sequent
system for classical propositional logic and which has the following rules for
negation 2:

g = —b = [~in] = —a, b [~rn]
—(aNb) = i = -(aAnb) "™
—a, b = ] = —a = b o]
“(avb)=> ' = -(aVb) ™
a = = a
—qQ = [_\l_‘] = —a [_\T_‘]

2We don’t know who was the first to present such sequent rules, but they can be found
in particular in [19] [1] [26].
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To make things clearer we have written the rules without the contexts,
but LM is contextually standard. It has also the same structural rules as
the system for classical propositional logic, including the cut rule. Cut-
elimination for LM can easily be proven, following a method similar to the
one presented in [4].

The rules of LM don’t have the subformula property, but they have
something analogous: the subnegformula property. A subnegformula of a
formula is a proper subformula or a negation of a proper subformula.

From cut-elimination and the subnegformula property it results the de-
cidability of the logical structure generated in the usual way by LM.

THEOREM 4. A logical structure generated by a LM system of sequents
1s a De Morgan logic.

Proof. We know that a logical structure generated by a structurally stan-
dard sequent system is a structural consequence relation 3. We have to show
furthermore that all axioms of Definiton 1 are valid in a logic generated by
a LM system of sequents. We will study just the case of axiom [-A]. Tt is
enough to prove that the sequents ~(aAb) = —aV-b and —~aV-b = —(aAb)
are derivable in a LM system of sequents.

—a = —a, b —b = —a,-b
—-a = —aV b -b= —-aV b [ﬁl/\]

-a = —a —-b = —b
—aV -b= —a,—b [-pA]
—a Vb= —(aAb)

What is more difficult is to prove the converse of this theorem:

THEOREM 5. A De Morgan logic can be generated by a LM system of
sequents.

Proof. To prove this theorem, there are two parts.

3 Structural here is used in two different ways. A structural consequence relation is a
relation invariant by substitutions. Using schema of rules we necessarily generate such
a structural consequence relation. A structurally standard sequent system is a system
having all the structural rules and standard contextual behaviour — see [12].
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e The first part consists in a completeness theorem between the Defi-
nition 1 of De Morgan logic and a sequent systems close to it, LMy,
which is a system of sequents with the standard structural rules, and
with rules which are the most direct translations of the axioms for
negation into sequent rules, for example the (model theoretical) ax-
iom [—A] of Definition 1 is translated into the two following (proof-
theoretical) axioms of the sequent system LMg: —(a Ab) = —a V —b
and —a V —b = —(a A D).

e The second part is just to prove that the rules of LM are derivable
rules of LM,.

In this paper we will not deal with the first part of this proof. It is possible
to prove a general completeness theorem connecting logical structures to
systems of sequents. This is universal logic. Details of such connection will
be given in another paper.

The second part of the proof is quite easy. We present the part showing
how we can derive in LM the rules [—;4] and [—,4] from the axiom [-A] .

-a = -b =

=(a Ab) = —a V —b [Axiom] —a Vb= [cut]
—(aNb) =
= a, —b
= —a V b —aV b= —(aAb) [Axiom] [cut]
= =(aAD)

4 Bivalent semantics for De Morgan logic
4.1 A non-truth functional bivalent semantics
DEFINITION 6. We consider the set of functions B from F to the set
{0,1} defined by the usual conditions for conjunction and disjunction and
the following conditions for negation:

[-A] B(=(anb)) =1iff B(-a) =1 or B(-b) =1

[-V] B(=(a Vb)) =1iff B(-a) =1 and S(-b) =1

[-—] B(——a) =1iff B(a) =1

Note that this is typically a generalized bivalent semantics in the sense
of da Costa [16] : this set of bivaluations is not generated by distributions



396 Jean-Yves Béziau

of truth-values for atomic formulas, and it is not a set of homomorphisms
between the set of formulas and some algebra of similar type of a logical
matrix.

DEFINITION 7. The semantical consequence relation =, is defined in the
usual way:

T =5 k iff for every 5 € B, if 8(j) = 1 for every j € T, then (k) = 1.

4.2 Truth-Tables

Following the idea of da Costa and Alves [15], we can build some truth-tables
based on this semantics.

DEFINITION 8. A truth-table is a table with a finite number of columns
and lines such that that on the first line in each column we have a formula
and on the other lines (proper lines) in each column we have 0 or 1 obeying
the following conditions:

e each proper line of the table can be extended into a bivaluation § from
F to {0,1}

e for any bivaluation (3, there is a proper line of the table such that
B(z) =y, for any z, x being a formula given by the first line, and y
being 0 or 1 according to the given line.

EXAMPLE 9. The following truth-table shows that for the atomic formulas
p and g we have =(p A q) 2 =pV ~g and —pV =g 2 ~(p A q):
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pPla|p| g |pAg|-(pAg | -pV g
0l0[ 0O 0 0 0
00 0 | 1 0 1 1
0l0[ 10 0 1 1
010 1 | 1 0 1 1
0100 0 0 0
0l1[0 |1 0 1 1
0Ol1] 10 0 1 1
0[1] 1 |1 0 1 1
1000 0 0 0
1o 0|1 0 1 1
1o 1[0 0 1 1
1o 1 |1 0 1 1
1100 1 0 0
1101 1 1 1
1110 1 1 1
11|11 1 1 1

This table has some additional features, corresponding to the following
definition:

DEFINITION 10. A truth-table is said to be full if the set of formulas of the
first line is closed by the subnegformula property, i.e. it contains all proper
subformulas and negations of proper subformulas of this set of formulas.

THEOREM 11. For any formula it is possible to construct a full truth-table

having on the first line the formula and the set of its subnegformulas.

Proof. We have first to give a method to build a table and then to show
that this table is a full truth-table. This can been done along the same line
as for the construction of truth-tables for the paraconsistent logic C1, see
e.g. [4]. |
5 Adequacy of the bivalent semantics

THEOREM 12 (Soundness). If Tk k then T =2 k

Proof. Straightforward, we leave it to the reader. |
THEOREM 13 (Completeness). If Tt/ k then T =2 k

Proof. If T I/ k then there is, according to Lindenbaum-Asser theorem [25]
[11] a relatively maximal extension of T" in k, i.e. a set of formulas V such
that
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e T'CV
o VI/E
o W I k for any strict extension W of V.

We just have to show that the characteristic function Gy of V is a bival-
uation, then we will have T 45 k.
We show that the characteristic function By of V' obeys the condition

[=A] B(~(a A b)) = 1 iff (~a) = 1 or A(=b) = 1
leaving the other cases for the reader.

If By(—a) =1 or By(—b) =1, then V I —a or V F —b, then by the rule
[=rn]l, VE=(aAb) then fy—(aAb) =1

If By (—a) = 0 and By (—b) = 0, then V I/ —a and V' / b, then, since V is
maximal in k, V, —a F k and V, —=b I k, then by the rule [-yA], V, =(aAD) - k,
therefore V I/ =(a A ), therefore Sy —(a Ab) = 0. |

6 Four-valued semantics for de Morgan logic
6.1 The four-valued De Morgan matrix

DEFINITION 14. We consider a set of four values {0~,0%, 17,17} partially
ordered as following

0- <0T <1"

0" <17 <17*
Using this partially order we define the following three functions from
{0=,0%,17,1%} to {0—,0%,17,1%}.

S(z)=zifxe {017}
S(07)=17%
(1) =0-

The structure ({0~,07,17,17}; A, V, 3) is a finite De Morgan lattice, we
will call it the four-valued De Morgan lattice.

The functions A, V,= can be called truth-functions and be defined more
visually by the following truth-tables.
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AJo-JoF[1-T1F
oo~ oo [o0"
of o~ loF o [oF
=lo- o |17 ]1°
1Flo-JoF |17 |1F
TRUTH-TABLE FOR CONJUNCTION

VIio-Jor[1-]1F
0O-[o0-|0F |17 |1F
O+ 0+ O+ 1+ 1+
1= (1= |1t |1~ |1t
1T 1t 1t |1t |1t

TRUTH-TABLE FOR DISJUNCTION

0~ | 17
0t | 07
1= |1
1t |0

TRUTH-TABLE FOR NEGATION

DEFINITION 15. We consider the set of homomorphisms between the ab-
solutely free algebra of formulas and the four-valued De Morgan lattice.
This defines a set of quadrivaluations T from F to {0~,07,17,1%}.

DEFINITION 16. We consider as a logical matrix the four-valued de Mor-
gan lattice together with {17,1%} as set of designated values.

DEFINITION 17. The semantical consequence relation =4 is defined in the
usual way:

T &4 k iff for every 8 € T, if 6(j) is designated for every j € T, then 6(k)
is designated.

This four-valued semantics is sound and complete for De Morgan logic.
There are several ways to prove that. We will use here a translation between
the four-valued semantics into the two-valued semantics.
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What is interesting with this four-valued semantics is that it is based on
an algebra which is similar to the algebra which is the factor structure of a
De Morgan logical structure we get using the relation of logical equivalence.
For the semantics however what is used is a finite De Morgan lattice, the
four-valued one.

6.2 Translation of the four-valued semantics into the
two-valued semantics

A way to reduce any semantics to a non-truth-functional bivalent semantics
has been studied in particular in [7]. The example of reduction presented
here is a straightforward applications of this method.

DEFINITION 18. Given a function 3 of the bivalent semantics, we define
a quadrivaluation g in the following way

0s(k) =0~ iff B(k) =0 and g(—k) =1

0s(k) = 0" iff (k) =0 and B(—k) =0

Os(k)=1"iff B(k) =1 and g(—k) =1

Os(k) =17 iff (k) =1 and B(—k) =0

THEOREM 19. This is a bijection between B and T such that:
03(k) is designated iff 5(k) = 1.

Proof. Straightforward on the complexity of formulas. |

As a corollary we have the following result:
THEOREM 20. T =2 k iff T =4 k.

The fact that the four-valued matrix semantics for De Morgan logic can
be reduced to a bivalent semantics does not mean that the four-valued
matrix semantics has no interest - for a discussion about this, see [14].

The subtitle of our paper is a kind of joke referring to the paper by O.
Arielli and A. Avron, called “The value of four values” [2]. Nevertheless it
is true that in some sense we don’t need four-values to deal with De Morgan
logic.
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